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Abstract

This paper is an axiomatic study of consistent approval-based committee (ABC) rules. These are multi-
winner voting rules that select a committee, i.e., a fixed-size group of candidates, based on approval ballots. 
We introduce the class of ABC scoring rules and provide an axiomatic characterization of this class based 
on the consistency axiom. Building upon this result, we axiomatically characterize three important consis-
tent multi-winner rules: Proportional Approval Voting, Multi-Winner Approval Voting and the Approval 
Chamberlin–Courant rule. Our results demonstrate the variety of ABC scoring rules and illustrate three 
different, orthogonal principles that multi-winner voting rules may represent: proportionality, diversity, and 
individual excellence.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

A multi-winner rule selects a fixed-size set of candidates—a committee—based on the pref-
erences of voters. Multi-winner elections are of importance in a wide range of scenarios, which 
often fit in, but are not limited to, one of the following three categories (Elkind et al., 2017; 
Faliszewski et al., 2017). The first category contains multi-winner elections aiming for propor-
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tionality. The archetypal example of a multi-winner election is that of selecting a representative 
body such as a parliament. The second category comprises multi-winner elections with the goal 
that as many voters as possible should have an acceptable representative in the committee. Conse-
quently, there is no or little weight put on giving voters a second representative in the committee. 
This goal may be desirable, e.g., in a deliberative democracy (Chamberlin and Courant, 1983; 
Dryzek and List, 2003). Voting rules suitable in such scenarios follow the principle of diversity. 
The third category contains scenarios where the goal is to choose a fixed number of best can-
didates and where ballots are viewed as expert judgments. Here, the chosen multi-winner rule 
should follow the individual excellence principle. An example is shortlisting nominees for an 
award where a nomination itself is often viewed as an achievement.

We consider multi-winner rules based on approval ballots, which allow voters to express di-
chotomous preferences. An approval ballot thus corresponds to a subset of (approved) candidates. 
A simple example of an approval-based election can highlight the distinct nature of proportional-
ity, diversity, and individual excellence: There are 100 voters and 5 candidates {a, b, c, d, e}: 66 
voters approve the set {a, b, c}, 33 voters approve {d}, and one voter approves {e}. Assume we 
want to select a committee of size three. If we follow the principle of proportionality, we could 
choose, e.g., {a, b, d}; this committee closely reflects the proportions of voter support. If we aim 
for diversity and do not consider it important to give voters more than one representative, we may 
choose the committee {a, d, e}: it contains one approved candidate of every voter. The principle 
of individual excellence aims to select the strongest candidates: a, b, and c have most supporters 
and are thus a natural choice, although the opinions of 34 voters are essentially ignored. We see 
that these three intuitive principles give rise to very different committees.

It is relatively easy to explain what proportionality, diversity, and individual excellence means 
when the voters’ preferences have a specific structure as in the above example. There, for any 
two voters, their approval sets are either the same or disjoint; this is equivalent to saying that the 
voters and candidates can be divided into disjoint groups so that each group of voters approves 
a single group of candidates (intuitively, such a group of candidates can be viewed as a political 
party)—we thus call such preference profiles party-list. However, specifying how a multiwinner 
voting rule should act on party-list profiles does not—on its own—provide comprehensive guid-
ance for choosing committees for the general model. To achieve that, one needs to rely on more 
general principles. Our analysis is thus based on four basic principles (framed as axioms):

(i) symmetry: the identity of voters and candidates should not affect the result of an election,
(ii) consistency1: if two disjoint societies both collectively prefer committee W1 to committee 

W2, then the union of these two societies should also collectively prefer W1 to W2,
(iii) weak efficiency: a committee should contain approved candidates rather than candidates 

that are not approved by anyone,
(iv) continuity: sufficiently large majorities should be able to dictate the decision.

As we show in this paper, among the rules that satisfy consistency, symmetry, continuity, and 
weak efficiency, specifying what proportionality means for party-list profiles is sufficient to char-
acterize a unique multi-winner rule. The same holds for diversity and individual excellence.

1 This is a straightforward adaption of consistency as defined for single-winner rules by Smith (1973) and Young 
(1974a).
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In this work, we focus on approval-based committee (ABC) ranking rules, i.e., rules that 
produce a ranking of all committees, rather than only a set of winning committees. This model 
is very versatile since with ABC ranking rules one can easily combine the societal evaluation 
of committees with additional requirements one would like to impose on the structure of the 
committee. For example, suppose the goal is to select a committee subject to certain diversity 
constraints (such as an equal number of men and women). In such scenarios, a ranking rule can 
be applied directly: among the committees that satisfy the diversity constraint, one can simply 
select the committee that appears highest in the societal ranking.

1.1. Main results

The first main result of this paper is an axiomatic characterization of ABC scoring rules, 
which are a subclass of ABC ranking rules. ABC scoring rules are informally defined as follows: 
given a real-valued function f (x, y) (the so-called approval scoring function), a committee W
receives a score of f (x, y) from every voter who approves x candidates in W and who approves y

candidates in total; the ABC scoring rule implemented by f ranks committees according to the 
sum of scores obtained from all voters. We obtain the following characterization.

Theorem 1. An ABC ranking rule is an ABC scoring rule if and only if it satisfies symmetry, 
consistency, weak efficiency, and continuity.

As weak efficiency is satisfied by every sensible multi-winner rule and continuity typically 
only rules out the use of certain tie-breaking mechanisms (Smith, 1973; Young, 1974a, 1975), 
Theorem 1 essentially implies that ABC scoring rules correspond to symmetric and consistent 
ABC ranking rules. Furthermore, we show that the set of axioms used to characterize ABC 
scoring rules is minimal.

Our second main result is the axiomatic explanation of the differences between three impor-
tant ABC scoring rules: Proportional Approval Voting (PAV), Approval Chamberlin–Courant 
(CC), and Multi-Winner Approval Voting (AV). These three well-known rules are prime exam-
ples of multi-winner systems following the principle of proportionality, diversity, and individual 
excellence, respectively. Our results imply that the differences between these three rules can be 
understood by studying how these rules behave when viewed as apportionment methods (Balin-
ski and Young, 1982; Pukelsheim, 2014). Apportionment methods are a well-studied special case 
of approval-based multi-winner voting, where only party-list profiles are considered. As men-
tioned before, it is easier to formalize the principles of proportionality, diversity, and individual 
excellence for these mathematically much simpler profiles:

D’Hondt proportionality defines a way in which parliamentary seats are assigned to parties in 
a proportional manner. The D’Hondt method (also known as Jefferson method) is one of the 
most commonly used methods of apportionment in parliamentary elections.

Disjoint diversity states that as many parties as possible should receive one seat and, if nec-
essary, priority is given to stronger parties. Disjoint diversity is implied by apportionment 
methods such as Huntington-Hill, Dean, or Adams.

Disjoint equality states that if each candidate is approved by at most one voter, then any com-
mittee consisting of approved candidates is a winning committee. One can argue that the 
principle of individual excellence implies disjoint equality: if every candidate is approved 
only once, then every approved candidate has the same support, their “quality” cannot 
3
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Table 1
ABC rules and axioms they satisfy (+) or fail (blank). We use the symbol 

⊕
instead of + if the axiom is involved in an 

axiomatic characterization of the rule or class of rules. Classes of rules (ABC scoring rules and Thiele methods) satisfy 
an axiom if all rules in the class satisfy it; they fail an axiom if one rule in the class fails it.
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ABC scoring rules
⊕ ⊕ ⊕ ⊕ ⊕

Thiele methods + + + + +

Multi-Winner Approval Voting (AV)
⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Proportional Approval Voting (PAV)
⊕ ⊕ ⊕

+
⊕ ⊕

+

Approval Chamberlin–Courant (CC)
⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Satisfaction Approval Voting + + + + +

be distinguished, and hence all approved candidates are equally well suited for selec-
tion.2

We show that Proportional Approval Voting is the only ABC scoring rule satisfying D’Hondt 
proportionality, that Approval Chamberlin–Courant is the only ABC scoring rule satisfying dis-
joint diversity, and that Multi-Winner Approval Voting is the only ABC scoring rule that satisfies 
disjoint equality. Together with Theorem 1, these results lead to axiomatic characterizations of 
PAV, CC, and AV within the general class of ABC ranking rules. In particular, our results show 
that Proportional Approval Voting is essentially the only consistent extension of the D’Hondt 
method to the more general setting where voters decide on individual candidates rather than on 
parties. Table 1 summarizes the axiomatic characterizations given in the paper.

We furthermore present two extensions of our main results. First, we show that approval scor-
ing functions that are not “close” to fPAV (all those not contained in the gray area around fPAV
in Fig. 1) implement ABC ranking rules that violate a rather weak form of proportionality called 
lower quota. Second, we show that our characterization of PAV can be generalized to a broader 
class of ABC scoring rules: given a certain kind of proportionality on party-list profiles, repre-
sented as a specific divisor apportionment method, we show that there is a unique symmetric, 
consistent and continuous ABC ranking rule that guarantees this kind of proportionality.

We postpone the discussion of related literature to Section 6.

2. Preliminaries

We write [n] to denote the set {1, . . . , n} and [i, j ] to denote {i, i + 1, . . . , j} for i ≤ j ∈ N . 
For a set X, let P(X) denote the powerset of X, i.e., the set of subsets of X. Further, for each �
let P�(X) denote the set of all size-� subsets of X. A weak order of X is a binary relation that 
is transitive and complete (all elements of X are comparable), and thus also reflexive. A linear 

2 In our characterization, disjoint equality could be replaced with a strictly stronger axiom requiring that, in party-list 
profiles, candidates with a maximum number of approvals must be contained in winning committees. The connection 
between this stronger axiom and individual excellence is easier to observe. We use disjoint equality in our characterization 
as it is a weaker assumption and thus strengthens the result.
4
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Fig. 1. Different approval scoring functions (see Section 3.1 for definitions) and their corresponding ABC scoring rules. 
Approval scoring functions outside the gray area fail the lower quota axiom; see Section 5.1 for a formal statement.

order is a weak order that is antisymmetric. We write W (X) to denote the set of all weak orders 
of X and L (X) to denote the set of all linear orders of X.

Approval profiles. Let C = {c1, . . . , cm} be a set of candidates, and let k denote the desired size 
of the committee to be formed. We refer to elements of Pk(C) as committees. Throughout the 
paper, we assume that both k and C (and thus m) are arbitrary but fixed. Furthermore, to avoid 
trivialities, we assume 1 ≤ k < m.

We identify voters with natural numbers, i.e., N is the set of all possible voters. Let V de-
note the set of all finite subsets of N . For each finite subset of voters V = {v1, . . . , vn} ∈ V , an 
approval profile of V is a function from V to P(C); we write A = (A(v1), . . . , A(vn)) as a short-
form for this function. For v ∈ V , let A(v) ⊆ C denote the subset of candidates approved by voter 
v. We write A(V ) to denote the set of all possible approval profiles of V and A = ⋃

V ∈V A(V )

to be the set of all approval profiles with finite voters sets. (We do not mention C in this no-
tation due to our assumption that C is fixed.) Given a permutation σ : C → C and X ⊆ C, let 
σ(X) = {σ(c) : c ∈ X}. Further, for an approval profile A ∈ A(V ), we write σ(A) to denote the 
profile (σ (A(v1)), . . . , σ(A(vn))).

Let V = {v1, . . . , vs} ∈ V and V ′ = {v′
1, . . . , v

′
t } ∈ V . Further, let A ∈ A(V ) and A′ ∈ A(V ′). 

If V and V ′ do not intersect, we write A + A′ to denote the profile B ∈ A(V ∪ V ′) defined 
as B = (A(v1), . . . , A(vs), A′(v′

1), . . . , A
′(v′

t )). If V and V ′ intersect, we relabel the voters to 
V ′′ = [1, s + t] and define B ∈ A(V ′′) analogously.3 For a positive integer n, we write nA to 
denote A + A + · · · + A, n times.

Approval-based committee ranking rules. An approval-based committee ranking rule (ABC 
ranking rule), F : A → W (Pk(C)), maps approval profiles to weak orders over committees. 
Note that C and k are parameters for ABC ranking rules but—since we assume that C and k are 

3 We define A + A′ for disjoint V and V ′ in this way so that we do not implicitly assume anonymity, i.e., that the 
identity of voters is irrelevant (see Section 3.2). This is necessary so that the consistency axiom (also Section 3.2) is 
independent of anonymity.
5
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fixed—we omit them to alleviate notation. For an ABC ranking rule F and an approval profile 
A, we write 	F(A) to denote the weak order F(A). For W1, W2 ∈ Pk(C), we write W1 
F(A)

W2 if W1 	F(A) W2 and not W2 	F(A) W1, and we write W1 ∼F(A) W2 if W1 	F(A) W2 and 
W2 	F(A) W1. A committee is a winning committee if it is a maximal element with respect to 
	F(A).

An ABC ranking rule is trivial if for all A ∈ A and W1, W2 ∈ Pk(C) it holds that W1 ∼F(A)

W2.
Let us now list some important examples of ABC ranking rules.

Thiele Methods (Thiele, 1895). Consider a sequence of positive weights w = (w1, w2, . . . , wk)

and define the w-score of a committee W as

∑
v∈V

|W∩A(v)|∑
j=1

wj ,

i.e., if voter v has x approved candidates in W , then W receives a score of w1 + w2 + · · · +
wx from v. The w-Thiele method ranks the committees according to their w-scores.

Proportional Approval Voting (PAV). PAV is a Thiele method defined by the weights w =
(1, 1/2, 1/3, . . . ).

Approval Chamberlin–Courant (CC). The Approval Chamberlin–Courant rule is a Thiele 
method defined by the weights wCC = (1, 0, 0, . . . ). Consequently, CC chooses commit-
tees so as to maximize the number of voters who have at least one approved candidate in 
the winning committee.

Multi-Winner Approval Voting (AV). AV is a Thiele method defined by the weights wAV =
(1, 1, 1, . . .). Equivalently, with AV each candidate c ∈ C obtains one point from each voter 
who approves c, and the AV-score of a committee W is the total number of points awarded 
to members of W , i.e., 

∑
c∈W |{v ∈ V : c ∈ A(v)}|.

3. ABC scoring rules

In this section we define a new class of multi-winner rules, called ABC scoring rules. ABC 
scoring rules can be viewed as an adaptation of positional scoring rules (Smith, 1973; Young, 
1974a) to the world of approval-based multi-winner rules. Furthermore, ABC scoring rules can 
be viewed as analogous to the class of (multi-winner) committee scoring rules as introduced by 
Elkind et al. (2017) but defined for approval ballots instead of ranked ballots.

After formally defining ABC scoring rules and introducing some basic axioms, we will 
present our main technical result: an axiomatic characterization of the class of ABC scoring 
rules. This result forms the basis for our subsequent axiomatic analysis.

3.1. Defining ABC scoring rules

An approval scoring function is a mapping f : [0, k] × [0, m] → R satisfying f (x, y) ≥
f (x′, y) for x ≥ x′. The intuitive meaning is that f (x, y) denotes the score that a committee W
obtains from a voter that approves of x members of W and y candidates in total. Let A ∈A(V ). 
We define the score of W in A as

scf (W,A) =
∑
v∈V

f (|A(v) ∩ W |, |A(v)|). (1)
6
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We say that an approval scoring function f implements an ABC ranking rule F if for every 
A ∈ A and W1, W2 ∈ Pk(C),

scf (W1,A) > scf (W2,A) if and only if W1 
F(A) W2.

An ABC ranking rule F is an ABC scoring rule if there exists an approval scoring function f

that implements F .
As we have seen in the introduction, PAV, CC, and AV are ABC scoring rules and can be 

implemented by the following approval scoring function:

fPAV(x, y) =
x∑

i=1

1/i, fCC(x, y) =
{

0 if x = 0,

1 if x ≥ 1,
fAV(x, y) = x.

Further, ABC scoring rules include rules such as Constant Threshold Methods (Fishburn and 
Pekec, 2004) and Satisfaction Approval Voting (Brams and Kilgour, 2014), implemented by

fCT(x, y) =
{

0 if x < t,

1 if x ≥ t
and fSAV(x, y) = x

y
.

Note that only Satisfaction Approval Voting is implemented by an approval scoring function de-
pending on y. As can easily be verified, Thiele methods are exactly those ABC scoring rules that 
can be implemented by an approval scoring function not dependent on y: the approval scoring 
function f defining w-Thiele is f (x, y) = w1 + · · · + wx and, conversely, every approval scor-
ing function f (x, y) that is independent of y can be written as f (x, y) = ∑x

j=1 wj for some 
sequence of positive weights (w1, . . . , wk).

It is apparent that not the whole domain of an ABC scoring rule is relevant; consider for 
example f (2, 1) or f (0, m)—these function values will not be used in the score computation of 
any committee, cf. Equation (1). The following proposition provides a tool for showing that two 
ABC scoring rules are equivalent. It shows which part of the domain of ABC scoring rules is 
relevant and that affine transformations yield equivalent rules.

Proposition 1. Let Dm,k = {(x, y) ∈ [0, k] × [0, m − 1] : x ≤ y ∧ k − x ≤ m − y} and let f, g be 
approval scoring functions. If there exist c ∈R and d : [m] → R such that f (x, y) = c ·g(x, y) +
d(y) for all x, y ∈ Dm,k then f, g implement the same ABC scoring rule, i.e., for all approval 
profiles A ∈ A(V ) and committees W1, W2 ∈ Pk(C) it holds that scf (W1, A) > scf (W2, A) if 
and only if scg(W1, A) > scg(W2, A).

3.2. Basic axioms

In this section, we discuss formal definitions of the axioms used for our main characteriza-
tion result (Theorem 1). All axioms are natural and straightforward adaptations of the respective 
properties of single-winner election rules. Similar axioms have also been considered in the con-
text of multi-winner rules for the model where voters express their preferences by ranking the 
candidates (Elkind et al., 2017; Skowron et al., 2019).

Anonymity and neutrality enforce perhaps the most basic fairness requirements for voting 
rules. Anonymity is a property which requires that all voters are treated equally, i.e., the result 
of an election does not depend on particular names of voters but only on votes that have been 
cast. In other words, under anonymous ABC ranking rules, each voter has the same voting power. 
Neutrality is similar, but enforces equal treatment of candidates rather than of voters.
7
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Anonymity. An ABC ranking rule F is anonymous if for V, V ′ ∈ V such that |V | = |V ′|, for 
each bijection ρ : V → V ′, and for A ∈ A(V ) and A′ ∈ A(V ′) such that A(v) = A′(ρ(v)) for 
each v ∈ V , it holds that F(A) =F(A′).

Neutrality. An ABC ranking rule F is neutral if for each bijection σ : C → C and A, A′ ∈A
with σ(A) = A′ it holds for W1, W2 ∈ Pk(C) that W1 	F(A) W2 if and only if σ(W1) 	F(A′)
σ (W2).

Due to their analogous structure and similar interpretations, anonymity and neutrality are very 
often considered together, and jointly referred to as symmetry.

Symmetry. An ABC ranking rule is symmetric if it is anonymous and neutral.

Consistency was first introduced in the context of single-winner rules by Smith (1973) and 
then adapted by Young (1974a). In the world of single-winner rules, consistency is often consid-
ered to be the axiom that characterizes positional scoring rules. Similarly, consistency played a 
crucial role in the recent characterization of committee scoring rules (Skowron et al., 2019), 
which can be considered the equivalent of positional scoring rules in the multi-winner set-
ting. Consistency is also the main ingredient for our axiomatic characterization of ABC scoring 
rules.

Consistency. An ABC ranking rule F is consistent if for disjoint V, V ′ ∈ V , A ∈ A(V ), A′ ∈
A(V ′), and W1, W2 ∈ Pk(C), it holds that

(i) if W1 
F(A) W2 and W1 	F(A′) W2, then W1 
F(A+A′) W2, and

(ii) if W1 	F(A) W2 and W1 	F(A′) W2, then W1 	F(A+A′) W2.

Next, we describe a weak efficiency axiom, which captures the intuition that candidates ap-
proved by no one are undesirable.

Weak efficiency. An ABC ranking rule F satisfies weak efficiency if for each W1, W2 ∈
Pk(C) and A ∈ A where no voter approves a candidate in W2 \ W1, it holds that W1 	F(A)

W2.

For k = 1, i.e., in the single-winner setting, we see that weak efficiency reduces to the follow-
ing statement: if no voter approves a candidate d , then any other candidate is at least as preferable 
as d .

The final axiom, continuity (Young, 1974a, 1975) (also known in the literature as the Ar-
chimedean property (Smith, 1973) or the Overwhelming Majority axiom (Myerson, 1995)), 
describes the influence of large majorities in the process of making a decision. Continuity en-
forces that a large enough group of voters is able to force the election of their most preferred 
8
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committee. Continuity is pivotal in Young’s characterizations of positional scoring rules (Young, 
1974a, 1975) as it excludes specific tie-breaking mechanisms.4

Continuity. An ABC ranking rule F satisfies continuity if for each W1, W2 ∈ Pk(C) and 
A, A′ ∈ A where W1 
F(A′) W2 there exists a positive integer n such that W1 
F(A+nA′) W2.

3.3. A characterization of ABC scoring rules

The following axiomatic characterization of the generic class of ABC scoring rules is a pow-
erful tool that forms the basis for further characterizations of specific ABC scoring rules. This 
result resembles Smith’s and Young’s characterization of positional scoring rules (Young, 1974a; 
Smith, 1973) as the only social welfare functions satisfying symmetry, consistency, and continu-
ity. Our characterization additionally requires weak efficiency, which stems from the condition 
that an approval scoring function f (x, y) must be weakly increasing in x. If a similar condition 
was imposed on positional scoring rules (i.e., that positional scores are weakly decreasing), an 
axiom analogous to weak efficiency would be required for a characterization as well.

Theorem 1. An ABC ranking rule is an ABC scoring rule if and only if it satisfies symmetry, 
consistency, weak efficiency, and continuity.

It is easy to verify that ABC scoring rules satisfy symmetry, consistency, weak efficiency, 
and continuity; all this follows immediately from the definitions in Section 3.1, in particular 
the summation in Equation (1). For example, consistency is an immediate consequence of the 
fact that scf (W, A + A′) = scf (W, A) + scf (W, A′). In Appendix A we provide the proof of 
the other implication. This proof relies on the axiomatic characterization of committee scoring 
rules (Skowron et al., 2019). Committee scoring rules are multi-winner voting rules that accept 
preferences in the form of linear orders as input and output a ranking of committees (a definition 
can be found in Appendix A). The main difference to ABC ranking rules is thus the type of 
preferences. It is important to note that the characterization of Skowron et al. (2019) only holds 
for linear orders and not for weak orders, hence ABC ranking rules are not covered by their 
result. On the contrary, it requires substantial work to prove the exact relation between these two 
classes so that results can be transferred from one class to the other.

The set of axioms used in Theorem 1 is minimal, i.e., any subset of axioms is not sufficient 
for the characterization statement to hold (see Appendix A.4).

4. Proportional and disproportional ABC scoring rules

In this section we consider axioms describing winning committees in party-list profiles and 
capture a specific variant of proportionality, individual excellence, or diversity. In party-list pro-
files, voters and candidates are grouped into clusters, which can be intuitively viewed as political 
parties. We will show that axioms for party-list profiles are sufficient to characterize certain ABC 

4 In Young’s characterization, continuity excludes composite positional scoring rules, where one or more additional 
positional scoring rules are evaluated in case of ties (same score). Other tie-breaking mechanisms are already excluded 
by consistency and symmetry.
9
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Table 2
Example for the D’Hondt 
method.

N1 N2 N3 N4

|Ni |/1 9 21 28 42
|Ni |/2 4.5 10.5 14 21
|Ni |/3 3 7 13 14
|Ni |/4 2.25 5.25 7 10.5
|Ni |/5 1.8 4.2 5.6 8.4

scoring rules: PAV, AV, and CC. Using the axiomatic characterization of ABC scoring rules (The-
orem 1), we obtain full axiomatic characterizations of these three rules.

Definition 1. An approval profile is a party-list profile with p parties if the set of voters can be 
partitioned into pairwise disjoint sets N1, N2, . . . , Np and the set of candidates can be partitioned 
into pairwise disjoint sets C1, C2, . . . , Cp such that, for each i ∈ [p], every voter v in Ni approves 
Ci and no other candidates, i.e., A(v) = Ci .

In other words, an approval profile is a party-list profile if for any two voters their approval 
sets are either the same or disjoint.

4.1. D’Hondt proportionality

In party-list profiles, we intuitively expect a proportional committee to contain as many candi-
dates from a party as is proportional to the number of this party’s supporters. There are numerous 
ways in which this concept can be formalized—different notions of proportionality are expressed 
through different methods of apportionment (Balinski and Young, 1982; Pukelsheim, 2014). In 
this section we consider one of the best known, and most commonly used concept of proportion-
ality: D’Hondt proportionality. The D’Hondt method is an apportionment method that works in 
k steps. It starts with an empty committee W = ∅ and in each step it selects a candidate from that 
set (party) Ci with a maximal value of |Ni ||W∩Ci |+1 ; the selected candidate is added to W .

Example 1. Consider an election with four groups of voters, N1, N2, N3, and N4 with cardi-
nalities equal to 9, 21, 28, and 42, respectively. Further, there are four groups of candidates 
C1 = {c1, . . . , c10}, C2 = {c11, . . . , c20}, C3 = {c21, . . . , c30}, and C4 = {c31, . . . , c40}. Voters in 
a group Ni approve exactly the candidates in Ci . Assume k = 10 and consider Table 2, which 
illustrates the ratios used in the D’Hondt method for determining which candidate should be 
selected. The 10 largest values (in bold) correspond to selected candidates.

Thus, the D’Hondt method first selects a candidate from C4, next a candidate from C3, next 
from C2 or C4 (their ratios in the third step are equal), etc. Eventually, in the selected committee 
there will be one candidate from C1, two candidates from C2, three from C3, and four from 
C4.

An important difference between the apportionment setting and our setting is that we do not 
necessarily assume an unrestricted number of candidates for each party. As a consequence, a 
party might deserve additional candidates but this is impossible to fulfill. Taking this restriction 
into account, we see that if the D’Hondt method picks a candidate from Ci and adds it to W , 
10
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then, for all j , either |Ni ||W∩Ci | ≥ |Nj |
|W∩Cj |+1 or Cj ⊆ W , i.e., all candidates from party j are already 

in the committee. Note that if Cj \ W �= ∅ and |Ni ||W∩Ci | <
|Nj |

|W∩Cj |+1 , then the D’Hondt method 
in the previous step would rather select a candidate from Cj than from Ci . These observations 
allow us to give a precise definition of D’Hondt proportional committees.

Definition 2. Let A be a party-list profile with p parties. A committee W ∈ Pk(C) is D’Hondt 
proportional for A if for all i, j ∈ [p], if W ∩Ci �= ∅, then either Cj ⊆ W or |Ni ||W∩Ci | ≥ |Nj |

|W∩Cj |+1 .

For the following axiom, recall that a winning committee is a maximal element in social 
ranking of committees, i.e., with respect to 	F(A).

D’Hondt proportionality. An ABC ranking rule satisfies D’Hondt proportionality if for each 
party-list profile A ∈ A, W ∈ Pk(C) is a winning committee if and only if W is D’Hondt 
proportional for A.

Note that this axiom is weak in the sense that it only describes the expected behavior of an 
ABC ranking rule on party-list profiles. As we will see, however, it is sufficient to obtain an 
axiomatic characterization of PAV in the more general framework of ABC ranking rules.

Theorem 2. Proportional Approval Voting is the only ABC scoring rule that satisfies D’Hondt 
proportionality.

When we combine Theorem 2 with Theorem 1, we obtain a full axiomatic characterization 
of Proportional Approval Voting within the class of ABC ranking rules: PAV is the only ABC 
ranking rule that satisfies symmetry, consistency, continuity, and D’Hondt proportionality. Note 
the absence of weak efficiency in the set of axioms that characterize PAV, since weak efficiency 
is implied by the other axioms (cf. Lemma 1 in Section 5.2). In Section 5.2, we will present a 
generalization of Theorem 2 that applies to apportionment methods other than D’Hondt.

Finally, we note that Theorem 2 shows that within the class of ABC scoring rules a weak 
proportionality axiom such as D’Hondt proportionality already suffices to imply much stronger 
proportionality guarantees: PAV satisfies axioms such as extended justified representation (Aziz 
et al., 2017) and proportional justified representation (Sánchez-Fernández et al., 2017).

4.2. Disjoint diversity

The disjoint diversity axiom is strongly related to the diversity principle, as it states that there 
exists a winning committee in which the k strongest parties receive at least one seat. In other 
words, every party has to receive one seat before one party receives a second seat.

Disjoint diversity. An ABC ranking rule F satisfies disjoint diversity if for every party-list 
profile A ∈ A with p parties and |N1| ≥ |N2| ≥ · · · ≥ |Np|, there exists a winning committee 
W with W ∩ Ci �= ∅ for all i ∈ {1, . . . , min(p, k)}.

Note that disjoint diversity is a slightly weaker axiom in comparison to D’Hondt proportion-
ality since it does not characterize all winning committees for party-list profiles—it only requires 
11
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the existence of one specific winning committee and does not even fully specify this committee. 
As a consequence, there are several apportionment methods in the literature that imply disjoint 
diversity: the Adams method, the Dean method, and the Huntington–Hill method all require that 
every party receives one seat before a party can obtain a second seat (Balinski and Young, 1982). 
Thus, it may come as a surprise that disjoint diversity nevertheless characterizes a single ABC 
scoring rule.

Theorem 3. The Approval Chamberlin–Courant rule is the only non-trivial ABC scoring rule 
that satisfies disjoint diversity.

Observe that CC does not extend the aforementioned apportionment methods because of the 
simple fact that it is not at all proportional. We can thus conclude that these apportionment 
methods do not have a counterpart in the class of ABC scoring rules. However, if we allow a 
tie-breaking mechanism, we find analogues. For example, the Adams method is a divisor method 
similar to D’Hondt but based on the divisor sequence (0, 1, 2, . . . ). As vote counts are first di-
vided by 0 (defined as an arbitrarily large number), each party is guaranteed to receive one seat. 
The Adams method can be extended to a ABC ranking rule: it is the Chamberlin–Courant rule 
with the (w1, 1, 1/2, 1/3, . . . )-Thiele method used to break ties between committees with the same 
CC score (w1 is an arbitrary number).

Finally, we obtain as a corollary that CC is characterized as the only non-trivial ABC ranking 
rule that satisfies symmetry, consistency, weak efficiency, continuity, and disjoint diversity.

4.3. Disjoint equality

In some scenarios, we might want a multi-winner rule to be neither proportional nor diverse. 
For example, if our goal is to select a set of finalists in a contest based on a set of recommen-
dations coming from judges or reviewers (a scenario that is often referred to as a shortlisting), 
candidates can be assessed independently and there is no need for proportionality. For instance, 
if our goal is to select 5 finalists in a contest, and if four reviewers support candidates c1, . . . , c5
and one reviewer supports candidates c6, . . . , c10 then it is very likely that we would prefer to 
select candidates c1, . . . , c5 as the finalists—in contrast to what, e.g., D’Hondt proportionality or 
disjoint diversity suggest.

Disjoint equality is a property which might be viewed as a certain type of disproportionality. 
Intuitively, it requires that each approval of a candidate carries the same power: a candidate 
approved by a voter v receives a certain level of support from v which does not depend on what 
other candidates v approve or disapprove of; in particular it does not depend on whether there 
are other members of a winning committee which are approved by v. Disjoint equality was first 
proposed by Fishburn (1978) and then used by Sertel (1988) as one of the distinctive axioms 
characterizing single-winner Approval Voting. The following axiom is its natural extension to 
the multi-winner setting.

Disjoint equality. An ABC ranking rule F satisfies disjoint equality if for every voters set 
V ∈ V , profile A ∈ A(V ) with 

∣∣⋃
v∈V A(v)

∣∣ ≥ k and where each candidate is approved at 
most once, the following holds: W ∈ Pk(C) is a winning committee if and only if W ⊆⋃

v∈V A(v).
12
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In other words, disjoint equality asserts that—in a profile consisting of disjoint approval 
ballots—every committee wins that consists of approved candidates. Note that disjoint equal-
ity applies to an even more restricted form of party-list profiles.

Theorem 4. Multi-Winner Approval Voting is the only ABC scoring rule that satisfies disjoint 
equality.

Theorem 4 together with Theorem 1 yields an axiomatic characterization: AV is the only 
ABC ranking rule that satisfies symmetry, consistency, weak efficiency, continuity, and disjoint 
equality.

5. Extensions

In this section we discuss two extensions of our main results. First, we define a weaker 
form of D’Hondt proportionality, called lower quota, and we show that ABC rules that satisfy 
lower quota must resemble PAV. Second, we extend our axiomatic characterizations of PAV and 
show a more general result that applies to a whole spectrum of different forms of proportional-
ity.

5.1. Lower quota

D’Hondt proportionality determines for every party-list profile an apportionment of candi-
dates to parties. One may wonder if this definition of proportionality can be further weakened 
and still allow a characterization of PAV. For example, the D’Hondt method is the only divisor 
method satisfying the lower quota axiom (Balinski and Young, 1982): intuitively, it states that a 
party that receives an α proportion of votes should receive at least �α · k� of the k available seats. 
In the following we will show that this weaker axiom is not sufficient, but it characterizes ABC 
scoring rules that are at least similar to PAV. Let us first define lower quota for ABC ranking 
rules:

Lower Quota. An ABC ranking rule satisfies lower quota if for each party-list profile A with 
p parties, and winning committee W ∈ Pk(C) it holds for all i ∈ {1, . . . , p} that |W ∩ Ci | ≥⌊

k|Ni ||V |
⌋

or |Ci | <
⌊

k|Ni ||V |
⌋

.

First, let us observe that there exist ABC scoring rules—other than PAV—which satisfy lower 
quota.

Example 2. Let m = 3 and k = 2. Let us consider an ABC scoring rule defined by the approval 
scoring function f (0, y) = 0, and f (1, y) = 1 and f (2, y) = 1.1. This rule satisfies lower quota: 
Let A be a party-list profile for m = 3 with p ≤ 3 disjoint groups of voters N1, N2, . . .Np and 
with their corresponding approval sets being C1, . . . , Cp . For the sake of contradiction, let us 
assume that there exists a winning committee W such that for some i ∈ [p] we have |Ci | ≥⌊

2 · |Ni ||V |
⌋

and |W ∩ Ci | <
⌊

2 · |Ni ||V |
⌋

. If Ni = V , then this means that a candidate who is not 
approved by any voter is contained in W , which contradicts the definition of our rule and the fact 
that there exist two candidates approved by some voters (since |Ni| = |V |, we get that |Ci | ≥ 2). 
If |Ni | < |V |, then 

⌊
2 · |Ni |⌋ can either be 0 or 1. Since |W ∩ Ci | <

⌊
2 · |Ni |⌋, we conclude that 
|V | |V |

13
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⌊
2 · |Ni ||V |

⌋ = 1 and |W ∩ Ci | = 0. Consequently |Ni | ≥ |V |
2 ; even if all the remaining voters from 

V \ Ni approved the two members of the winning committee W it is more beneficial, according 
to our rule, to drop one such candidate from W and to add a candidate from Ci . Indeed, it is 
easy to verify that such a committee would have a higher score. This shows that our rule indeed 
satisfies lower quota.

The following shows that ABC scoring rules satisfying lower quota must resemble PAV.

Proposition 2. Fix x, y ∈ N and let m ≥ y + k − x + 1. Let F be an ABC scoring rule satisfying 
lower quota, and let f be an approval scoring function implementing F . It holds that:

f (x − 1, y) + 1

x
· f (1,1) · k − x

k − x + 1
≤ f (x, y) ≤ f (x − 1, y) + 1

x − 1
· f (1,1).

Note that limk→∞ k−x
k−x+1 = 1, so Proposition 2 asserts that—for large k—the value of f (x, y)

is roughly between f (x −1, y) + 1
x

·f (1, 1) and f (x −1, y) + 1
x−1 ·f (1, 1). Recall that for PAV 

we have that f (x, y) = f (x − 1, y) + 1
x

· f (1, 1) and hence Proposition 2 indeed implies that an 
ABC scoring rule satisfying lower quota must be defined by an approval scoring function similar 
to PAV.

For a visualization of this result, we recall Fig. 1 in the introduction of this paper. The gray 
area displays the lower and upper bound obtained from Proposition 2; to compute a lower bound 
we used k = 8.

5.2. Extension to other forms of proportionality

In this section we formulate an axiom that generalizes D’Hondt proportionality. Given a se-
quence d = (d1, d2, . . .), the d-proportionality requires that a multi-winner rule must behave 
on party-list profiles as a divisor apportionment method based on the sequence of divisors d . 
Thus, for the sequence dDHondt = (1, 2, 3, . . .), dDHondt-proportionality is equivalent to D’Hondt 
proportionality. Notably, this definition applies to other known apportionment divisor meth-
ods, such as the Sainte-Laguë (Webster) method—the divisor method based on the sequence 
dSL = (1, 3, 5, . . .). It also applies to non-linear forms of proportionality—for example, the se-
quence of divisors dPenrose = (1, 4, 9, . . .) implements the idea of square-root proportionality as 
devised by Penrose (1946), where a party should get a number of seats proportional to the square 
root of the number of supporters. In the following we use the convention that x

∞ = 0 for integers 
x.

Definition 3. Let A be a non-decreasing party-list profile with p parties, and d = (di)i∈N , where 
di ∈ N ∪ {∞} for each i ∈ N . A committee W ∈ Pk(C) is d-proportional for A if for all i, j ∈
[p] one of the following conditions holds: (i) Cj ⊆ W , or (ii) W ∩ Ci = ∅, or (iii) |Ni |

d|W∩Ci |
≥

|Nj |
d|W∩Cj |+1

.

d-proportionality. Let d = (di)i∈N be a sequence of values from N ∪ {∞}. An ABC rank-
ing rule satisfies d-proportionality if for each party-list profile A ∈ A(V ), W ∈ Pk(C) is a 
winning committee if and only if W is d-proportional for A.
14
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Theorem 5. Let d = (d1, d2, . . .) be a non-decreasing sequence of values from N ∪ {∞} and 
let w = (1/d1, 1/d2, . . .). The w-Thiele method is the only ABC scoring rule that satisfies d-
proportionality.

Theorem 5 contains the characterization of PAV via D’Hondt proportionality as a special 
case. It also gives a characterization of CC as the only ABC scoring rule that is (1, ∞, ∞, . . . )-
proportional. Note that this characterization is slightly weaker than the one via disjoint diversity 
(Theorem 3), since (1, ∞, ∞, . . . )-proportionality specifies the behavior of the rule on all party-
list profiles. Furthermore, we can use Theorem 5 to obtain axiomatic characterizations within the 
class of ABC ranking rules.

Lemma 1. Let d = (d1, d2, . . .) be a non-decreasing sequence of values from N . An ABC 
ranking rule that satisfies neutrality, consistency, and d-proportionality also satisfies weak ef-
ficiency.

By combining Theorem 1, Theorem 5, and Lemma 1, we obtain the desired characteriza-
tion.

Corollary 1. Let d = (d1, d2, . . .) be a non-decreasing sequence of values from N ∪ {∞} and let 
w = (1/d1, 1/d2, . . .). The w-Thiele method is the only ABC ranking rule that satisfies symmetry, 
consistency, continuity, weak efficiency, and d-proportionality. If the values from the sequence 
d do not contain ∞, then we do not require weak efficiency to characterize the corresponding 
w-Thiele method.

6. Related literature

We briefly review literature that is helpful to place our paper in a larger research context. 
Multi-winner voting rules are central to political elections and originate from this context (cf. the 
books of Farrell 2011, and Renwick and Pilet 2016). In recent years, however, there has been 
an emerging interest in multi-winner elections from the computer science community. In this 
context, multi-winner election rules have been analyzed and applied in a variety of scenarios: 
personalized recommendation and advertisement (Lu and Boutilier, 2011, 2015), group recom-
mendation (Skowron et al., 2016; Chakraborty et al., 2019), diversifying search results (Skowron 
et al., 2017), improving genetic algorithms (Faliszewski et al., 2016), and the broad class of facil-
ity location problems (Farahani and Hekmatfar, 2009; Skowron et al., 2016). In all these settings, 
multi-winner voting either appears as a core problem itself or can help to improve mechanisms 
and algorithms. For an overview of this literature, we refer the reader to surveys by Faliszewski 
et al. (2017) and Lackner and Skowron (2020).

The most important axiomatic concept in our study is consistency. Smith (1973) and Young 
(1974a) independently introduced this axiom and characterized the class of positional scoring 
rules as the only social welfare functions that satisfy symmetry, consistency, and continuity. 
Subsequently, Young (1975) proved an analogous result for social choice functions, i.e., rules that 
return the set of winning candidates. Further, Myerson (1995) and Pivato (2013) characterized 
positional scoring rules with the same set of axioms but without imposing any restriction on the 
input of rules, i.e., ballots are not restricted to be a particular type of order. Extensive studies led 
to further, more specific, characterizations of consistent voting rules (Chebotarev and Shamis, 
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1998; Merlin, 2003). Consistency is an important concept also in probabilistic social choice: 
Brandl et al. (2016) characterize Fishburn’s rule of maximal lotteries via two consistency axioms.

In contrast to single-winner voting which is largely well-understood and characterized, ax-
iomatic studies of multi-winner rules are considerably fewer in number and are mostly studied in 
the model where the voters express their preferences by ranking the candidates. Debord (1992)
characterized the k-Borda rule using similar axioms as Young (1974b). Felsenthal and Maoz 
(1992) and Elkind et al. (2017) formulated a number of axiomatic properties of multi-winner 
rules, and analyzed which rules satisfy these axioms. The axiomatic characterization of the class 
of committee scoring rules by Skowron et al. (2019) plays a major rule in the proof of Theorem 1
(details in Appendix A). Faliszewski et al. (2018, 2019) further studied the internal structure of 
committee scoring rules and characterized several multi-winner rules within this class. A major 
topic in this field is proportional representation and several notions have been proposed (Dum-
mett, 1984; Aziz et al., 2017; Sánchez-Fernández et al., 2017; Peters and Skowron, 2020); a 
detailed summary can be found in the survey of Lackner and Skowron (2020). Finally, recent 
work has demonstrated that proportionality is incompatible with various forms of strategyproof-
ness (Peters, 2018; Lackner and Skowron, 2018b; Kluiving et al., 2020).

7. Conclusions

In this paper we analyzed a variety of different rules which all satisfy four common proper-
ties: symmetry, consistency, continuity, and weak efficiency. We identified the class of rules that 
is uniquely defined by these four properties: ABC scoring rules—to the best of our knowledge, 
this class has not been studied previously. The class of ABC scoring rules is remarkably broad. 
It contains several classic ABC ranking rules, such as Proportional Approval Voting (PAV), Ap-
proval Chamberlin–Courant (CC), and Multi-Winner Approval Voting (AV). The class of ABC 
scoring rules contains the class of Thiele methods, which itself is versatile—Thiele methods are 
those ABC scoring rules that can be defined by approval scoring functions which do not depend 
on the parameter y (for example, PAV, CC, and AV are Thiele methods). In addition, the class 
of ABC scoring rules contains all dissatisfaction counting rules, whose defining approval scor-
ing functions depend only on the difference y − x (Lackner and Skowron, 2018b). (Intuitively, 
according to dissatisfaction counting rules, each voter cares about minimizing the number of ap-
proved but not elected candidates. AV is only one rule which belongs to the classes of Thiele 
methods and dissatisfaction counting rules.) Yet, ABC scoring rules give an extra degree of free-
dom, compared to Thiele methods and dissatisfaction counting rules, as they also include other 
interesting voting methods such as Satisfaction Approval Voting, which is defined by the follow-
ing approval scoring function: fSAV(x, y) = x/y. Satisfaction Approval Voting is quite different 
from the three rules mentioned above. It uses a very specific interpretation of voters’ approval 
ballots—it assumes each voter is initially given one point, which she can split equally among 
a set of candidates of her choice; such an interpretation cannot be achieved within the class of 
Thiele methods or dissatisfaction counting rules.

Our main result, Theorem 1, allows obtaining further, more specific axiomatic characteriza-
tions. In particular, as our second main result, we provided axiomatic characterizations of three 
specific ABC scoring rules: Proportional Approval Voting, Approval Chamberlin–Courant and 
Multi-Winner Approval Voting. These characterizations are obtained by axioms that describe 
desirable outcomes for certain simple profiles, so-called party-list profiles. This is a fruitful 
approach as it is much easier to formally define concepts such as proportionality or diversity 
on these simple profiles. In such profiles it is also easy to formulate properties which quantify 
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trade-offs between individual efficiency, proportionality, and diversity. Furthermore, the simpler 
domain of party-list profiles is sufficient to explain the difference between the rules: PAV, AV, and 
CC can be obtained by extending three different principles defined for party-list profiles to the 
more general domain by additionally imposing the same set of axioms. Therefore, their defining 
differences can be found in party-list profiles.

Our results are general and extend to other concepts definable on party-list profiles, e.g., 
Sainte-Laguë (Pukelsheim, 2014; Balinski and Young, 1982) or square-root proportionality (Pen-
rose, 1946; Slomczyński and Życzkowski, 2006). Square-root proportionality follows the degres-
sive proportionality principle (Koriyama et al., 2013), which suggests that smaller populations 
should be allocated more representatives than linear proportionality would require. This can be 
achieved by using a flatter approval scoring function than fPAV and by that we obtain rules 
which increasingly promote diversity within the committee. An extreme example is the Ap-
proval Chamberlin–Courant rule, where the diversity within a winning committee is strongly 
favored over proportionality. On the other hand, using steeper approval scoring functions results 
in rules with a utilitarian focus, i.e., rules that tend to select candidates with the high total support 
from voters, and ignoring issues of proportional representation. Multi-Winner Approval Voting 
is an extreme example of a rule which does not guarantee virtually any level of proportional-
ity.

Further, Theorem 1 allows to obtain other interesting characterizations, which are not in the 
main focus of this paper. For example, by adding independence of irrelevant alternatives to the 
set of axioms listed in Theorem 1 we obtain a characterization of the class of Thiele methods; 
if we add a variant of monotonicity, we obtain a characterization of the class of dissatisfaction 
counting rules (Lackner and Skowron, 2018b). Finally, including a variant of strategyproofness 
yields a characterization of Multi-Winner Approval Voting (Lackner and Skowron, 2018b).
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Appendix A. Characterization of ABC scoring rules

In this section we prove the main technical result of this paper:

Theorem 1. An ABC ranking rule is an ABC scoring rule if and only if it satisfies symmetry, 
consistency, weak efficiency, and continuity.

The following definitions and notation will prove useful:
17
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• For each � ∈ [0, m], we say that an approval profile A is �-regular if each voter in A approves 
of exactly � candidates.

• We say that A is �-bounded if each voter in A approves of at most � candidates.
• We write set(A) to denote {A(v) : v ∈ V } and by that ignore multiplicities of votes.
• Sometimes we associate an approval set S ⊆ C with the single-voter profile A ∈A({1}) such 

that A(1) = S; in such a case we write F(S) as a short form of F(A) for appropriately defined 
A.

Committee scoring rules Before we start describing our construction, let us recall the defini-
tion of committee scoring rules (Skowron et al., 2019), a concept that will play an instrumental 
role in our further discussion. Linear order-based committee (LOC) ranking rules, in contrast 
to ABC ranking rules, assume that voters’ preferences are given as linear orders over the set 
of candidates. For a finite set of voters V = {v1, . . . , vn} ∈ V , a profile of linear orders over V , 
P = (P (v1), . . . , P(vn)), is an n-tuple of linear orders over C indexed by the elements of V , i.e., 
for all v ∈ V we have P(v) ∈ L (C). A linear order-based committee ranking rule (LOC ranking 
rule) is a function that maps profiles of linear orders to W (Pk(C)), the set of weak orders over 
committees.

Let P be a profile of linear orders over V . For a vote v and a candidate a, by posv(a, P) we 
denote the position of a in P(v) (the top-ranked candidate has position 1 and the bottom-ranked 
candidate has position m). For a vote v ∈ V and a committee W ∈ Pk(C), we write posv(W, P)

to denote the set of positions of all members of W in ranking P(v), i.e., posv(W, P) =
{posv(a, P) : a ∈ W }. A committee scoring function is a mapping g : Pk([m]) → R that for 
each possible position that a committee can occupy in a ranking (there are 

(
m
k

)
of all possible po-

sitions), assigns a score. Intuitively, for each I ∈ Pk([m]) value g(I) can be viewed as the score 
assigned by a voter v to the committee whose members stand in v’s ranking on positions from set 
I . Additionally, a committee scoring function g(I) is required to satisfy weak dominance, which 
is defined as follows. Let I, J ∈ Pk([m]) such that I = {i1, . . . , ik}, J = {j1, . . . , jk}, and that 
i1 < · · · < ik and j1 < · · · < jk . We say that I dominates J if for each t ∈ [k] we have it ≤ jt . 
Weak dominance holds if I dominating J implies that g(I) ≥ g(J ).

For a profile of linear orders P over C and a committee W ∈ Pk(C), we write scf (W, P)

to denote the total score that the voters from V assign to committee W . Formally, we have that 
scg(W, P) = ∑

v∈V g(posv(W, P)). An LOC ranking rule G is an LOC scoring rule if there 
exists a committee scoring function g such that for each W1, W2 ∈ Pk(C) and profile of linear 
orders P over V , we have that W1 is strictly preferred to W2 with respect to the weak order G(P )

if and only if scg(W1, P) > scg(W2, P).
The axioms from Section 3.2 can be naturally formulated for LOC ranking rules. We will use 

these formulations of the axioms in the proof of Lemma 3. For the sake of readability we do not 
recall their definitions here, but rather in the proof, where they are used.

Overview of the proof of Theorem 1 As mentioned before, it is easy to see that ABC scoring 
rules satisfy symmetry, consistency, weak efficiency, and continuity. The proof of the other direc-
tion consists of several steps. Let F be an ABC ranking rule satisfying symmetry, consistency, 
weak efficiency, and continuity.

We start in Section A.1 by proving that weak efficiency in conjunction with the other axioms 
implies a stronger efficiency axiom, which proves useful in the subsequent constructions. In 
Section A.2, we prove that the characterization theorem holds for the very restricted class of 
�-regular profiles, i.e., profiles where every voter approves exactly � candidates. To this end, 
18



M. Lackner and P. Skowron Journal of Economic Theory 192 (2021) 105173
ABC ranking rule F

LOC scoring rule G�

committee scoring function g�

approval scoring function f�

ABC ranking rule F

implements on �-regular
approval profiles

(cf. Lemma 5)

defines (cf. Lemma 4)

implies the existence of (by Skowron et al. 2019)

defines (cf. Lemma 3)

Fig. A.2. A diagram illustrating the reasoning used in Section A.2 to prove that in �-regular approval profiles, F is an 
ABC scoring rule.

for each �, we consider the LOC ranking rule G� that converts each voter’s linear order into 
the approval ballot consisting of her top � candidates and then applies F . We then show that 
the LOC ranking rule G� satisfies equivalent axioms to symmetry, consistency, weak efficiency, 
and continuity. This allows us to apply a theorem by Skowron et al. (2019), who proved that 
LOC ranking rules satisfying these axioms are in fact LOC scoring rules. Thus, there exists a 
corresponding committee scoring function g�, which in turn defines an approval scoring function 
f�. As a last step, we show that f� implements F on �-regular approval profiles and thus prove 
that Theorem 1 holds restricted to �-regular approval profiles.

In Section A.3, we extend this restricted result to arbitrary approval profiles. For each � ∈ [m]
we have obtained an approval scoring function f� which defines F on �-regular profiles. Our 
goal is to show that there exists a linear combination of these approvals scoring functions f =∑

�∈[m] γ�f� which defines F on arbitrary profiles. We define the corresponding coefficients 
γ1, . . . , γm inductively. We first construct two specific committees W ∗

1 and W ∗
2 , which we use 

to scale the coefficients, and additionally, in order to define coefficient γ�+1 we construct two 
specific votes, a∗

�+1 and b∗
�+1, with exactly � +1, and at most � approved candidates, respectively. 

We define coefficient γ�+1 using the definition of f for �-bounded profiles and by exploring 
how F compares committees W ∗

1 and W ∗
2 for very specific profiles which are built from certain 

numbers of votes a∗
�+1 and b∗

�+1. This concludes the construction of f .
Showing that f = ∑

�∈[m] γ�f� implements F requires a rather involved analysis, which is 
divided into several lemmas. In Lemma 7 we show that f implements F , but only for the case 
when F is used to compare W ∗

1 and W ∗
2 , and only for very specific profiles. In Lemma 8 we 

still assume that F is used to compare only W ∗
1 and W ∗

2 , but this time we extend the statement 
to arbitrary profiles. In Lemma 10 we show the case when F is used to compare W ∗

1 with any 
other committee. We complete this reasoning with a short discussion explaining the validity of 
our statement in its full generality. Each of the aforementioned lemmas is based on a different 
idea and they build upon each other. The main proof technique is to transform simple approval 
profiles to more complex ones and argue that certain properties are preserved due to the required 
axioms. An overview of the proof structure is displayed in Fig. A.2.
19



M. Lackner and P. Skowron Journal of Economic Theory 192 (2021) 105173
A.1. A stronger efficiency axiom

In the subsequent proofs we will use the following strong efficiency axiom:

Strong Efficiency. An ABC ranking rule F satisfies strong efficiency if for every voter set 
V ∈ V , committees W1, W2 ∈ Pk(C) and A ∈ A(V ) where for every voter v ∈ V we have 
|A(v) ∩ W1| ≥ |A(v) ∩ W2|, it holds that W1 	F(A) W2.

For k = 1, i.e., in the single-winner setting, strong efficiency is the well-known Pareto effi-
ciency axiom, which requires that if a candidate c is unanimously preferred to candidate d , then 
d 	 c in the collective ranking (Moulin, 1988).

The following lemma shows that strong efficiency in the context of neutral and consistent 
rules is implied by its weaker counterpart.

Lemma 2. An ABC ranking rule that satisfies neutrality, consistency and weak efficiency also 
satisfies strong efficiency.

Proof. Let F be an ABC ranking rule that satisfies neutrality, consistency and weak efficiency. 
Further, let W1, W2 ∈ Pk(C) and A ∈ A(V ) such that for every vote v ∈ V we have |A(v) ∩
W1| ≥ |A(v) ∩ W2|. We have to show that W1 	F(A) W2. Fix v ∈ V and let Av ∈ A({1}) be the 
profile containing the single vote A(v). Now, let us consider a committee W ′

2 constructed from 
W2 in the following way. We obtain W ′

2 from W2 by replacing candidates in W2 \ A(v) with 
candidates from A(v) so that |A(v) ∩W ′

2| = |A(v) ∩W1|. Note that A(v) ∩W2 ⊆ A(v) ∩W ′
2 and 

hence candidates in A(v) ∩ (W2 \W ′
2) = ∅. Hence by weak efficiency we get that W ′

2 	F(Av) W2. 
Furthermore, neutrality implies that W ′

2 ∼F(Av) W1 and by transitivity we infer that W1 	F(Av)

W2. The final step is to apply consistency. For every v ∈ V , W1 	F(Av) W2. Hence also for their 
combination 

∑
v∈V Av = A we have W1 	F(A) W2. �

A.2. F is an ABC scoring rule on �-regular approval profiles

Recall that we assume that F is an ABC ranking rule satisfying symmetry, consistency, weak 
efficiency, and continuity. If F is trivial, i.e., if F always maps to the trivial relation, then F is the 
ABC scoring rule implemented by f (x, y) = 0. Thus, hereinafter we assume that F is a fixed, 
non-trivial ABC ranking rule satisfying anonymity, neutrality, weak efficiency, and continuity. 
By Lemma 2 we can also assume that F satisfies strong efficiency.

As a first step, we will prove in this section that F restricted to �-regular approval profiles is 
an ABC scoring rule, i.e., that there exists an approval scoring function that implements F on 
�-regular approval profiles.

For each � ∈ [m], from F we construct an LOC ranking rule, G�, as follows. For a profile of 
linear orders P , by Appr(P, �) we denote the approval preference profile where voters approve 
of their top � candidates. We define for every � ∈ [m] an LOC ranking rule G�, as:

G�(P ) = F
(
Appr(P, �)

)
. (A.1)

Lemma 3, below, shows that our construction preserves the axioms under consideration and 
consequently that G� is an LOC scoring rule. As mentioned before, this lemma heavily builds 
upon the characterization result of Skowron et al. (2019).
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Lemma 3. Let F be an ABC ranking rule satisfying symmetry, consistency, strong efficiency and 
continuity. Then for each � ∈ [m], the LOC ranking rule G� defined by Equation (A.1) is an LOC 
scoring rule.

Proof. The proof of this lemma relies on the main theorem of Skowron et al. (2019): an LOC 
ranking rule is a LOC scoring rule if and only if it satisfies anonymity, neutrality, consistency, 
committee dominance, and continuity. We thus have to verify that G� satisfies these axioms. 
Note that since G� is an LOC ranking rule, the corresponding axioms differ slightly from the 
ones introduced in Section 3.2. Thus, in the following we introduce each of these axioms for 
LOC ranking rules and prove that it is satisfied by G� for arbitrary �.

(Anonymity) An LOC ranking rule G satisfies anonymity if for every two sets of voters 
V, V ′ ∈ V such that |V | = |V ′|, for each bijection ρ : V → V ′ and for every two profiles of linear 
orders P1 and P2 over V and V ′, respectively, such that P1(v) = P2(ρ(v)) for each v ∈ V , it holds 
that G(P1) = G(P2). Let V, V ′, ρ, P1, P2 be defined accordingly. Note that P1(v) = P2(ρ(v))

implies that Appr(P1, �)(v) = Appr(P2, �)(ρ(v)). Hence, by anonymity of F ,

G�(P1) = F
(
Appr(P1, �)

) = F
(
Appr(P2, �)

) = G�(P2).

(Neutrality) An LOC ranking rule G satisfies neutrality if for each permutation σ of C
and every two preference profiles P1, P2 over the same voter set V with P1 = σ(P2), it holds 
that G(P1) = σ(G(P2)). Let P1, P2, V , and σ be defined accordingly. Note that Appr(P1, �) =
σ(Appr(P2, �)). Then, by neutrality of F ,

G�(P1) = F
(
Appr(P1, �)

) = F(σ
(
Appr(P2, �)

)
) = σ(F

(
Appr(P2, �)

)
) = σ(G�(P2)).

(Consistency) An LOC ranking rule G satisfies consistency if for every two profiles P1 and P2

over disjoint sets of voters, V ∈ V and V ′ ∈ V , V ∩ V ′ = ∅, and every two committees W1, W2 ∈
Pk(C), (i) if W1 
G(P1) W2 and W1 	G(P2) W2, then it holds that W1 
G(P1+P2) W2 and (ii) if 
W1 	G(P1) W2 and W1 	G(P2) W2, then it holds that W1 	G(P1+P2) W2. Let P1, P2, V, V ′, W1, 
and W2 be defined accordingly. Let us prove (i). If W1 
G�(P1) W2, then W1 
F(Appr(P1,�)) W2. 
Analogously, if W1 	G�(P2) W2, then W1 	F(Appr(P2,�)) W2. By consistency of F , we know that 
W1 
F(Appr(P1,�)+Appr(P2,�)) W2. Clearly, Appr(P1, �) + Appr(P2, �) = Appr(P1 + P2, �). We 
can conclude that W1 
F(Appr(P1+P2,�)) W2 and hence W1 
G�(P1+P2) W2. The proof of (ii) is 
analogous.

(Committee dominance) An LOC ranking rule G satisfies committee dominance if for ev-
ery two committees W1, W2 ∈ Pk(C) and each profile of linear orders P where for every vote 
v ∈ V , posv(W1, P) dominates posv(W2, P), it holds that W1 	G(P ) W2. Let W1, W2, and P
be defined accordingly. If posv(W1, P) dominates posv(W2, P), then clearly for each v ∈ V , 
|Appr(P, �)(v) ∩ W1| ≥ |Appr(P, �)(v) ∩ W2|. By strong efficiency of F , W1 	G�(P ) W2.

(Continuity) An LOC ranking rule G satisfies continuity if for every two committees W1, W2 ∈
Pk(C) and every two profiles P1 and P2 where W1 
G(P2) W2, there exists a number n ∈N such 
that W1 
G(P1+nP2) W2. This is an immediate consequence of the fact that F satisfies continu-
ity. �

Lemma 3 shows that there exists a committee scoring function implementing rule G�. The 
following lemma shows that this committee scoring function has a special form that allows it to 
be represented by an approval scoring function.
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Lemma 4. For � ∈ [m], let g� : Pk([m]) → R be a committee scoring function that implements 
G�. There exists an approval scoring function f� such that:

g�(I ) = f�(|{i ∈ I : i ≤ �}|, �) for each I ∈ [m]k and � ∈ [m].

Proof. We have to show that for an arbitrary profile of linear orders P over V and some v ∈ V , 
two committees W1 and W2 have the same score g�(posv(W1)) = g�(posv(W2)) given that

|{i ∈ posv(W1) : i ≤ �}| = |{i ∈ posv(W2) : i ≤ �}|.
From the neutrality of F , we see that if v has the same number of approved members in W1 as in 
W2, W1 and W2 are equally good with respect to F . Thus if W1 and W2 have the same number 
of members in the top � positions in v, then W1 and W2 are also equally good with respect to G�. 
Hence the scores assigned by g� to the positions occupied by W1 and W2 are the same. �

We are now ready to prove Lemma 5, which provides the main technical conclusion of this 
section.

Lemma 5. For each � ∈ [m], the approval scoring function f�(a, �), as defined in the statement 
of Lemma 4, implements F on �-regular approval profiles.

Proof. For each �-regular approval profile A we can create an ordinal profile Rank(A, �) where 
voters put all approved candidates in their top � positions (in some fixed arbitrary order) and in 
the next (m − �) positions the candidates that they disapprove of (also in some fixed arbitrary 
order). Naturally, Appr(Rank(A, �), �) = A. Thus, a committee W1 is preferred over W2 in A
according to F if and only if W1 is preferred over W2 in Rank(A, �) according to G�. Since G� is 
an LOC scoring rule, the previous statement holds if and only if W1 has a higher score than W2
according to the committee scoring function g�. This is equivalent to W1 having a higher score 
according to f� (Lemma 4). We conclude that W1 is preferred over W2 in A according to F if 
and only if W1 has a higher score according to f�. Consequently, we have shown that F is an 
ABC scoring rule for �-regular approval profiles. �

As the construction in the proof of Lemma 5 relies on Rank(A, �) and so it applies only to 
profiles where each voter approves the same number of candidates, we need new ideas to prove 
that F is an ABC scoring rule on arbitrary profiles. We explain these ideas in the following 
section.

A.3. F is an ABC scoring rule on arbitrary profiles

We now generalize the result of Lemma 5 for �-regular profiles to arbitrary approval profiles. 
We will use here the following notation.

Definition 4. For an approval profile A ∈ A(V ) and � ∈ [0, m] we write Bnd(A, �) to denote 
the profile consisting of all votes v ∈ V with A(v) ≤ �, i.e., Bnd(A, �) ∈ A(V ′) with V ′ = {v ∈
V : A(v) ≤ �} and Bnd(A, �)(v) = A(v) for all v ∈ V ′. Analogously, we write Reg(A, �) to 
denote the profile consisting of all votes A(v), for v ∈ V with A(v) = �.

Clearly, Bnd(A, �) is �-bounded and Reg(A, �) is �-regular.
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Now, let {f�}�≤m be the family of approval scoring functions witnessing that F , when applied 
to �-regular profiles, is an ABC scoring rule (cf. Lemma 5). From {f�}�≤m we will now con-
struct a single approval scoring function f that witnesses that F is an ABC scoring rule. Since 
f and f� have to produce the same output on �-regular profiles, it would be tempting to define 
f (x, �) = f�(x, �). However, this simple construction does not work. Instead, we will find con-
stants γ1, . . . , γm such that f (x, �) = γ� ·f�(x, �) and show that with this construction we indeed 
obtain an approval scoring function implementing F .

For this construction, let us fix two arbitrary committees W ∗
1 , W ∗

2 with the smallest possible 
size of the intersection. In particular, W ∗

1 ∩ W ∗
2 = ∅ for m ≥ 2k. Let W ∗

1 \ W ∗
2 = {a1, . . . at }, and 

let W ∗
2 \ W ∗

1 = {b1, . . . bt }. By σ ∗ we denote the permutation that swaps a1 with b1, a2 with b2, 
etc., and that is the identity elsewhere.

We will define γ1, . . . , γm inductively. For the base case we set f (0, 0) = 0. Now, let us 
assume that f is defined on [0, k] × [0, �] and that f implements F on �-bounded profiles. To 
choose γ�+1, we distinguish the following three cases:

Case (A). If in all (� + 1)-regular profiles A it holds that W ∗
1 ∼F(A) W ∗

2 , then we set γ�+1 = 0.
Case (B). If we are not in Case (A) and in all �-bounded profiles A it holds that W ∗

1 ∼F(A) W ∗
2 , 

then we set γ�+1 = 1.
Case (C). Otherwise, there exist a single-vote (� + 1)-regular profile A such that W ∗

1 �F(A) W ∗
2

and a single-vote �-bounded profile A′ such that W ∗
1 �F(A′) W ∗

2 . Indeed, if for all (� + 1)-
regular single-vote profiles A ∈A({1}) it holds that W ∗

1 ∼F(A) W ∗
2 , then by consistency this 

holds for all (� +1)-regular profiles, which is a precondition of Case (A). Similarly, if for all 
�-bounded single-vote profiles A ∈A({1}) it holds that W ∗

1 ∼F(A) W ∗
2 , then by consistency 

this holds for all �-bounded profiles (precondition of Case (B)). Consequently, the profiles 
A and A′ can be chosen to consist of single votes.

In the following, by slight abuse of notation, we identify a set of approved candidates 
with its corresponding single-vote profile. Let a∗

�+1 ⊆ C be a vote such that (i) |a∗
�+1| =

� + 1, (ii) W ∗
1 
F(a∗

�+1)
W ∗

2 , and (iii) such that the difference between the scores of W ∗
1

and W ∗
2 is maximized. Furthermore, let b∗

�+1 ⊆ C be a vote such that (i) |b∗
�+1| ≤ �, (ii) 

W ∗
1 
F(b∗

�+1)
W ∗

2 , and (iii) such that the difference between the scores of W ∗
1 and W ∗

2 is 
maximized. For each x, y ∈ N we define the profile S(x, y) as:

S(x, y) = x · σ ∗(a∗
�+1) + y · b∗

�+1.

Let us define t∗�+1 as:

t∗�+1 = sup
{x

y
: W ∗

1 
F(S(x,y)) W ∗
2

}
, (A.2)

which is a well-defined positive real number as we show in Lemma 6. We define:

γ�+1 = scf (W ∗
1 , b∗

�+1) − scf (W ∗
2 , b∗

�+1)

t∗�+1 ·
(

scf�+1(W
∗
1 , a∗

�+1) − scf�+1(W
∗
2 , a∗

�+1)
) .

This concludes the construction of f . Let us now show that t∗�+1 is a positive real number and 
that it defines a threshold:

Lemma 6. The supremum t∗�+1, as defined by Equation (A.2), is a positive real number. Further-
more, if x/y < t∗ , then W ∗ 
F(S(x,y)) W ∗. If x/y > t∗ , then W ∗ 
F(S(x,y)) W ∗.
�+1 1 2 �+1 2 1

23



M. Lackner and P. Skowron Journal of Economic Theory 192 (2021) 105173
Proof. Let us argue that t∗�+1 is well defined. By continuity there exists y such that W ∗
1 
F(S(1,y))

W ∗
2 . Consequently, the set in (A.2) is nonempty. Also by continuity, there exists x such that 

W ∗
2 
F(S(x,1)) W ∗

1 . Further, we observe that for each x′, y′ with x′/y′ > x it also holds that 
W ∗

2 
F(S(x′,y′)) W ∗
1 . Indeed, since S(x′, y′) = S(xy′, y′) + S(x′ − xy′, 0), we infer that in such 

case S(x′, y′) can be split into y′ copies of S(x, 1) and x′ − xy′ copies of σ ∗(a∗
�+1). By consis-

tency we get W ∗
2 
F(S(x′,y′)) W ∗

1 . Thus, the set in (A.2) is bounded, and so t∗�+1 is a positive real 
number.

To show the second statement, let us assume that x/y < t∗�+1. From the definition of t∗�+1
we infer that there exist x′, y′ ∈ N , such that x/y < x′/y′ and such that W ∗

1 
F(S(x′,y′)) W ∗
2 . By 

consistency, it also holds that W ∗
1 
F(S(xx′,xy′)) W ∗

2 . Since W ∗
1 
F(S(0,1)) W ∗

2 and x′y − xy′ > 0
and we get that W ∗

1 
F(S(0,x′y−xy′)) W ∗
2 . Now, observe that

S(xx′, x′y) = S(xx′, xy′) + S(0, x′y − xy′).

Thus, from consistency infer that W ∗
1 
F(S(xx′,x′y)) W ∗

2 . Again, by consistency we get that 
W ∗

1 
F(S(x,y)) W ∗
2 .

Next, let us assume that x/y > t∗�+1. Then, there exist x′, y′ ∈ N , such that x/y > x′/y′ and such 
that W ∗

2 
F(S(x′,y′)) W ∗
1 . Similarly as before, we get that W ∗

2 
F(S(x′y,yy′)) W ∗
1 and since xy′ −

x′y > 0 we get that W ∗
2 
F(S(xy′−x′y,0)) W ∗

1 . Since S(xy′, yy′) = S(x′y, yy′) + S(xy′ − x′y, 0), 
consistency implies that W ∗

2 
F(S(xy′,yy′)) W ∗
1 . Finally, we get that W ∗

2 
F(S(x,y)) W ∗
1 , which 

completes the proof. �
In the remainder of this section, we prove that f is indeed an approval scoring function that 

implements F and thus F is an ABC scoring rule. We prove this for increasingly general profiles, 
starting with very simple ones, and at first we prove a slightly weaker relation between f and F .

Lemma 7. Let us fix � ∈ [m − 1]. Let A ∈ A(V ) be an approval profile with A(v) ∈
{a∗

�+1, b
∗
�+1, σ

∗(a∗
�+1), σ

∗(b∗
�+1)} for all v ∈ V . Then:

scf (W ∗
1 ,A) > scf (W ∗

2 ,A) =⇒ W ∗
1 
F(A) W ∗

2 .

Proof. We start by noting that if b∗
�+1 and a∗

�+1 are defined, then Case (C) occurred when defin-
ing γ�+1. In particular, t∗�+1 has been defined and Lemma 6 is applicable.

First we show that if A contains both a∗
�+1 and σ ∗(a∗

�+1), then after removing both from 
A the relative order of W ∗

1 and W ∗
2 does not change. Without loss of generality, let us assume 

that W ∗
1 
F(A) W ∗

2 and consider the profile Q that consist of two votes, a∗
�+1 and σ ∗(a∗

�+1). 
By neutrality, W ∗

1 and W ∗
2 are equally good with respect to Q. If W ∗

2 	F(A−Q) W ∗
1 , then by 

consistency we would get that W ∗
2 	F(A) W ∗

1 , a contradiction. By the same argument we observe 
that if A contains b∗

�+1 and σ ∗(b∗
�+1), then after removing them from A the relative order of W ∗

1
and W ∗

2 does not change. Further if A contains only votes b∗
�+1 and a∗

�+1, then by consistency 
we can infer that W ∗

1 is preferred over W ∗
2 in A. Also, A cannot contain only votes σ ∗(b∗

�+1)

and σ ∗(a∗
�+1), since in both these single-vote profiles the score of W ∗

2 is greater than the score 
of W ∗

1 (this follows from Lemma 5 and from the fact that f for �-regular profiles is a linear 
transformation of an appropriate approval scoring function f�).

The above reasoning shows that without loss of generality we can assume that in A there are 
either only the votes of types b∗

�+1 and σ ∗(a∗
�+1) or only the votes of types a∗

�+1 and σ ∗(b∗
�+1). 

Let us consider the first case, and let us assume that in A there are yA votes of type b∗
�+1 and xA

votes of type σ ∗(a∗ ). Since scf (W ∗, A) > scf (W ∗, A), we get that:
�+1 1 2
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yA · scf (W ∗
1 , b∗

�+1) + xA · scf (W ∗
1 , σ ∗(a∗

�+1))

> yA · scf (W ∗
2 , b∗

�+1) + xA · scf (W ∗
2 , σ ∗(a∗

�+1)).

Thus, from the definition of σ ∗ we get that:

yA · scf (W ∗
1 , b∗

�+1) + xA · scf (W ∗
2 , a∗

�+1) > yA · scf (W ∗
2 , b∗

�+1) + xA · scf (W ∗
1 , a∗

�+1).

Which is equivalent to:

xA · (scf (W ∗
1 , a∗

�+1) − scf (W ∗
2 , a∗

�+1)
)
< yA · (scf (W ∗

1 , b∗
�+1) − scf (W ∗

2 , b∗
�+1)

)
.

From the above inequality we get that:

xA

yA

<
scf (W ∗

1 , b∗
�+1) − scf (W ∗

2 , b∗
�+1)

scf (W ∗
1 , a∗

�+1) − scf (W ∗
2 , a∗

�+1)
= scf (W ∗

1 , b∗
�+1) − scf (W ∗

2 , b∗
�+1)

γ�+1
(
scf�+1(W

∗
1 , a∗

�+1) − scf�+1(W
∗
2 , a∗

�+1)
)

= t∗�+1.

Observe that A = S(xA, yA), so since xA/yA < t∗�+1, from Lemma 6 we infer that W ∗
1 
F(A) W ∗

2 .
Now, let us assume that A consists only of the votes of types a∗

�+1 and σ ∗(b∗
�+1). In such case 

the profile σ ∗(A) consists only of votes of types b∗
�+1 and σ ∗(a∗

�+1). Further, scf (W ∗
2 , σ ∗(A)) >

scf (W ∗
1 , σ ∗(A)). Similarly as before, let us assume that in σ ∗(A) there are yA votes of type b∗

�+1
and xA votes of type σ ∗(a∗

�+1). By similar reasoning as before we infer that xA/yA > t∗�+1, and by 
Lemma 6 that W ∗

2 
F(σ ∗(A)) W ∗
1 . From this, by neutrality, it follows that W ∗

1 
F(A) W ∗
2 , which 

completes the proof. �
Next, we generalize Lemma 7 to arbitrary profiles, yet we still focus on comparing the two 

distinguished profiles W ∗
1 and W ∗

2 .

Lemma 8. For all A ∈A(V ) it holds that

scf (W ∗
1 ,A) > scf (W ∗

2 ,A) =⇒ W ∗
1 
F(A) W ∗

2 .

Proof. We prove this statement by induction on �-bounded profiles. For 0-bounded profiles A
this is trivial since scf (W ∗

1 , A) > scf (W ∗
2 , A) cannot hold.

Assume that the statement holds for �-bounded profiles and assume that scf (W ∗
1 , A) >

scf (W ∗
2 , A). If Case (A) was applicable when defining γ�+1, i.e., if γ�+1 = 0, then scf (W ∗

1 , A) >
scf (W ∗

2 , A) implies scf (W ∗
1 , Bnd(A, �)) > scf (W ∗

2 , Bnd(A, �)) since the score of (� + 1)-
regular profiles is 0. This implies by the induction hypothesis that W ∗

1 
F(Bnd(A,�)) W ∗
2 . Further-

more, since Case (A) was applicable, W ∗
1 ∼F(Reg(A,�+1)) W ∗

2 . Since A = Bnd(A, �) +Reg(A, � +
1), consistency yields that W ∗

1 
F(A) W ∗
2 .

In Case (B), we know that W ∗
1 ∼F(A) W ∗

2 for all �-bounded profiles. Hence W ∗
1 ∼F(Bnd(A,�))

W ∗
2 . By our induction hypothesis, this implies that scf (W ∗

1 , Bnd(A, �)) = scf (W ∗
2 , Bnd(A, �)). 

Hence scf (W ∗
1 , Reg(A, � + 1)) > scf (W ∗

2 , Reg(A, � + 1)). Recall that Lemma 5 states that f�+1
implements F on (� + 1)-regular profiles. Since Reg(A, � + 1) is an (� + 1)-regular profile and 
f (x, � + 1) = f�+1(x, � + 1), in particular scf (W ∗

1 , Reg(A, � + 1)) > scf (W ∗
2 , Reg(A, � + 1))

implies W ∗
1 
F(Reg(A,�+1)) W ∗

2 . Furthermore, by consistency, W ∗
1 has the same relative position 

as W ∗
2 in F(Reg(A, � + 1)) and F(A), which in turn implies W ∗

1 
F(A) W ∗
2 .

In Case (C), for the sake of contradiction let us assume that W ∗
2 	F(A) W ∗

1 . Let us 
take an arbitrary vote v ∈ V with A(v) /∈ {b∗

�+1, a
∗
�+1, σ

∗(b∗
�+1), σ

∗(a∗
�+1)}. We will show in 

the following that there exists a profile A′ with set(A′) = set(A) \ {A(v)}, scf (W ∗, A′) >
1
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scf (W ∗
2 , A′), and W ∗

2 	F(A′) W ∗
1 . We then repeat this step until we obtain a profile A′′ with 

set(A′′) = {b∗
�+1, a

∗
�+1, σ

∗(b∗
�+1), σ

∗(a∗
�+1)}. Still, it holds that scf (W ∗

1 , A′′) > scf (W ∗
2 , A′′) and 

W ∗
2 	F(A′′) W ∗

1 , but that contradicts Lemma 7. Consequently, W ∗
1 
F(A) W ∗

2 has to hold.
Let us now show that there exists a profile A′ with set(A′) = set(A) \ {A(v)}, scf (W ∗

1 , A′) >
scf (W ∗

2 , A′), and W ∗
2 	F(A′) W ∗

1 . If W ∗
1 ∼F(A(v)) W ∗

2 , then by consistency the relative order of 
W ∗

1 and W ∗
2 in F(A′) is the same as in F(A). Also, since the scores of committees W ∗

1 and W ∗
2

are the same in v (cf. Lemma 5), we get that scf (W ∗
1 , A′) > scf (W ∗

2 , A′).
Let us now consider the case that W ∗

1 
F(A(v)) W ∗
2 . Let nv = |{v′ ∈ V : A(v′) = A(v)}|. We 

set

ε = scf (W ∗
1 ,A) − scf (W ∗

2 ,A) > 0. (A.3)

We distinguish two cases: |A(v)| ≤ � and |A(v)| = � + 1. Let us consider |A(v)| ≤ � first. We 
observe that there exist values x, y ∈N such that:

0 <
x

y

(
scf (W ∗

1 , σ ∗(b∗
�+1)) − scf (W ∗

2 , σ ∗(b∗
�+1))

) + nv

(
scf (W ∗

1 , v) − scf (W ∗
2 , v)

)
<

ε

2
.

(A.4)

Now, consider a profile B = y · A + x · σ ∗(b∗
�+1) + x · b∗

�+1. By consistency, W ∗
2 	F(B) W ∗

1 . 
Next, let us consider a profile Q = x · σ ∗(b∗

�+1) + y · nv · A(v). From Equality (A.4) we see that 
W ∗

1 has a higher score in Q than W ∗
2 . Since Q is �-bounded, by our inductive assumption we get 

that W ∗
1 
F(Q) W ∗

2 . Consequently, by consistency we get that W ∗
2 
F(B−Q) W ∗

1 since otherwise 
W ∗

1 
F(B) W ∗
2 , a contradiction. Further, from Equalities (A.3) and (A.4) we get that in B − Q

the score of W ∗
1 is greater than the score of W ∗

2 , which can be seen as follows:

scf (W ∗
1 ,B − Q) − scf (W ∗

2 ,B − Q)

= scf (W ∗
1 ,B) − scf (W ∗

2 ,B) − (scf (W ∗
1 ,Q) − scf (W ∗

2 ,Q))

= yε − (scf (W ∗
1 ,Q) − scf (W ∗

2 ,Q)) >
yε

2
.

We obtained the profile B −Q = y ·A + x(σ ∗(b∗
�+1) + b∗

�+1) − x ·σ ∗(b∗
�+1) − y ·nv ·A(v) = y ·

(A −nv ·A(v)) +x ·b∗
�+1, for which set(B−Q) = set(A) \{A(v)}. Furthermore, the relative order 

of W ∗
1 and W ∗

2 in F(B − Q) is the same as in F(A), and scf (W ∗
1 , B − Q) > scf (W ∗

2 , B − Q).
Let us now turn to the case that |A(v)| = � + 1. Similar to before, we choose x, y ∈ N such 

that:

0 <
x

y

(
scf (W ∗

1 , σ ∗(a∗
�+1)) − scf (W ∗

2 , σ ∗(a∗
�+1))

) + nv

(
scf (W ∗

1 , v) − scf (W ∗
2 , v)

)
<

ε

2
.

(A.5)

Now, consider a profile B = y ·A +x ·σ ∗(a∗
�+1) +x ·a∗

�+1 for which, by consistency, W ∗
2 	F(B)

W ∗
1 holds. Let Q = x ·σ ∗(a∗

�+1) +y ·nv ·A(v). From Equality (A.5) we see that W ∗
1 has a higher 

score in Q than W ∗
2 . Since Q is (� + 1)-regular, Lemma 5 gives us that W ∗

1 
F(Q) W ∗
2 . As 

before, by consistency we get that W ∗
2 
F(B−Q) W ∗

1 , and from Equalities (A.3) and (A.5) we get 
that scf (W ∗

1 , B − Q) > scf (W ∗
2 , B − Q). Hence, also in this case, we have obtained the profile 

B − Q, for which set(B − Q) = set(A) \ {A(v)}, the relative order of W ∗
1 and W ∗

2 in F(B − Q)

is the same as in F(A), and scf (W ∗
1 , B − Q) > scf (W ∗

2 , B − Q).
Finally, if W ∗

2 
F(A(v)) W ∗
1 in v, we can repeat the above reasoning, but applying σ∗ to all 

occurrences of b∗ , a∗ , σ ∗(b∗ ), and σ ∗(a∗ ). �
�+1 �+1 �+1 �+1
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Before we proceed further, we establish the existence of two particular profiles A∗
� and B∗

� , 
that we will need for proving the most general variant of our statement.

Lemma 9. Let W1, W2, W3 ∈ Pk(C) such that |W1 ∩ W3| > |W1 ∩ W2|. For each �, 1 ≤ � ≤ m, 
if F is non-trivial for �-regular profiles, then there exist two �-regular profiles, A∗

� and B∗
� , such 

that:

1. scf (W1, A∗
�) = scf (W3, A∗

�) > scf (W2, A∗
�) and W1 ∼F(A∗

�)
W3 
F(A∗

�)
W2,

2. scf (W1, B∗
� ) = scf (W3, B∗

� ) < scf (W2, B∗
� ) and W1 ∼F(B∗

� ) W3 ≺F(B∗
� ) W2.

Proof. Let c be a candidate such that c ∈ W1 ∩ W3 and c /∈ W2. Such a candidate exists because 
|W1 ∩ W3| > |W1 ∩ W2|. Profile A∗

� contains, for each S ⊆ C \ {c} with |S| = � − 1, a vote with 
approval set S ∪ {c}. First, let us note that all committees that contain c have the same f�-score 
in A∗

� : this follows from neutrality, since the profile A∗
� is symmetric with respect to committees 

containing c, in particular W1 and W3. Let s denote the score of such committees.
Next, we will argue that scf�

(W2, A∗
�) < s. To see this, let c′ ∈ W2 and consider a committee 

W ′
2 = (W2 \ {c′}) ∪ {c}. Since f implements F on �-regular profiles, there exists x ≤ k such that 

f�(x, �) > f�(x − 1, �). Due to Proposition 1 we can assume that m − � ≥ k − (x − 1); otherwise 
this difference between f�(x, �) and f�(x − 1, �) would not be relevant for computing scores. 
Let T ⊆ C \ {c, c′} such that |T | = � − 1 and |T ∩W2| = x − 1. To show that such a T exists, we 
have to prove that there exist (� − 1) − (x − 1) candidates in (C \ W2) \ {c, c′}. This is the case 
since m − � ≥ k − (x − 1) and thus |(C \ W2) \ {c, c′}| = m − k − 1 ≥ � − x.

Now let v be the vote in A∗
� with approval set T ∪ {c}. Since f�(x, �) > f�(x − 1, �),

f�(|A∗
�(v) ∩ W ′

2|, |A∗
�(v)|) > f�(|A∗

�(v) ∩ W2|, |A∗
�(v)|).

Furthermore, for all votes v′ in A∗
� :

f�(|A∗
�(v

′) ∩ W ′
2|, |A∗

�(v)|) ≥ f�(|A∗
�(v

′) ∩ W2|, |A∗
�(v)|).

Hence, scf�
(W ′

2, A
∗
�) > scf�

(W2, A∗
�). Since f (x, �) = γ� · f�(x, �) we get scf (W ′

2, A
∗
�) >

scf (W2, A∗
�). Further, by a previous argument we have scf (W1, A∗

�) = scf (W ′
2, A

∗
�), thus by 

transitivity we conclude that scf (W1, A∗
�) > scf (W2, A∗

�).
Next, let us construct profile B∗

� . In this case we choose c such that c ∈ W2 and c /∈ W1 ∪ W3. 
Again, this is possible because |W3 \ W1| = k − |W1 ∩ W3| < k − |W1 ∩ W2| = |W2 \ W1| and 
hence W2 �W1 ∪ W3. Similarly as before, B∗

� contains a vote with approval set S ∪ {c} for each 
S ⊆ C \ {c} with |S| = � − 1. With similar arguments as before we can show that all committees 
that contain c have the same score in B∗

� (in particular W2) and this score is larger than the score 
of committees that do not contain c (in particular W1 and W3).

Finally, the statements concerning F follow from Lemma 5 since both A∗
� and B∗

� are �-
regular. �

We further generalize Lemma 7 and 8 so to allow us to compare W ∗
1 with arbitrary profiles 

(in particular, with profiles that have an arbitrary intersection with W ∗
1 ). This is the final step; we 

can then proceed with a direct proof of Theorem 1.

Lemma 10. For all A ∈A(V ) and W ∈ Pk(C) it holds that

scf (W ∗,A) > scf (W,A) =⇒ W ∗ 
F(A) W .
1 1
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Proof. We prove this statement by induction on �-bounded profiles. As in Lemma 8, for 0-
bounded profiles A the statement is trivial since scf (W ∗

1 , A) > scf (W, A) cannot hold.
In order to prove the inductive step, we assume that the statement holds for �-bounded profiles. 

Let A be an (� + 1)-bounded profile and assume that scf (W ∗
1 , A) > scf (W, A). We will show 

that W ∗
1 
F(A) W . If Case (A) or (B) was applicable when defining γ�+1, the same arguments as 

in Lemma 8 yield that W ∗
1 
F(A) W .

If Case (C) was applicable when defining γ�+1 and if |W ∗
1 ∩ W | = |W ∗

1 ∩ W ∗
2 |, then the 

statement of the lemma follows from Lemma 8 and neutrality. Recall that we fixed W ∗
1 and W ∗

2
as two committees with the smallest possible size of the intersection. Thus, if |W ∗

1 ∩W | �= |W ∗
1 ∩

W ∗
2 | then |W ∗

1 ∩W | > |W ∗
1 ∩W ∗

2 |. For the sake of contradiction let us assume that W 	F(A) W ∗
1 . 

Let scf (W ∗
1 , A) − scf (W, A) = ε > 0.

Now, from A we create a new profile B in the following way. Let us consider two cases:

Case 1: scf (W ∗
2 , Bnd(A, �)) − scf (W, Bnd(A, �)) ≥ 0.

Let Q be an �-bounded profile where:

scf (W ∗
1 ,Q) = scf (W,Q) > scf (W ∗

2 ,Q).

Such a profile exists due to Lemma 9. Since scf (W ∗
2 , Q) − scf (W, Q) is negative, there 

exist such x ∈N , y ∈ N ∪ {0} that x ≥ 2 and

0 ≤
(

scf (W ∗
2 ,Bnd(A, �)) − scf (W,Bnd(A, �))

)
+ y/x ·

(
scf (W ∗

2 ,Q) − scf (W,Q)
)

< ε/2,

which is equivalent to

0 ≤ scf (W ∗
2 , xBnd(A, �) + yQ) − scf (W,xBnd(A, �) + yQ) < xε/2. (A.6)

We set B = xA + yQ.
Case 2: scf (W ∗

2 , Bnd(A, �)) − scf (W, Bnd(A, �)) < 0.
In this case our reasoning is very similar. Let Q be an �-bounded profile where:

scf (W ∗
2 ,Q) > scf (W ∗

1 ,Q) = scf (W,Q).

Again, similarly as before, we observe that there exist such x, y ∈ N that x ≥ 1 and:

0 ≤
(

scf (W ∗
2 ,Bnd(A, �)) − scf (W,Bnd(A, �))

)
+ y/x ·

(
scf (W ∗

2 ,Q) − scf (W,Q)
)

< ε/2,

which is equivalent to Inequality (A.6). Here, we also set B = xA + yQ.

By similar transformation as before, but applied to Reg(B, � +1) rather than to Bnd(A, �), we 
construct a profile D from B:

Case 1: scf (W ∗
2 , Reg(B, � + 1)) − scf (W, Reg(B, � + 1)) ≥ 0.

Due to Lemma 9 there exists an (� + 1)-regular profile Q′ with

scf (W ∗
1 ,Q′) = scf (W,Q′) > scf (W ∗

2 ,Q′).

Similarly as before, there exist x′ ∈N , y′ ∈ N ∪ {0} such that
28
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0 ≤ scf (W ∗
2 , x′Reg(B, � + 1) + y′Q′) − scf (W,x′Reg(B, � + 1) + y′Q′) < x′ε/2.

(A.7)

We set D = x′B + y′Q′.
Case 2: scf (W ∗

2 , Reg(B, � + 1)) − scf (W, Reg(B, � + 1)) < 0.
Here, let Q′ be an (� + 1)-regular profile such that

scf (W ∗
1 ,Q′) = scf (W,Q′) > scf (W ∗

2 ,Q′).
There exist x′, y′ ∈N such that Inequality (A.7) is satisfied. We set D = x′B + y′Q′.

Let us analyze the resulting profile D = x′xA + x′yQ + y′Q′. By our assumption we know 
that W 	F(A) W ∗

1 , thus by consistency we get that W 	F(xx′A) W ∗
1 . Since W ∼F(Q) W ∗

1 and 
W ∼F(Q′) W ∗

1 due to Lemma 9, from consistency it follows that W 	F(D) W ∗
1 .

Further, since Q is �-bounded and Q′ is (� + 1)-regular,

D = x′xA + x′yQ + y′Q′

= Bnd(x′xA + x′yQ + y′Q′, �) + Reg(x′B + y′Q′, � + 1)

= Bnd(x′xA + x′yQ,�) + Reg(x′B + y′Q′, � + 1)

= x′Bnd(xA + yQ,�) + Reg(x′B + y′Q′, � + 1).

Inequalities (A.6) and (A.7) imply that W ∗
2 has a higher score than W in profiles x′(xBnd(A, �) +

yQ) = x′Bnd(xA + yQ, �) and x′Reg(B, � + 1) + y′Q′ = Reg(x′B + y′Q′, � + 1). From our 
inductive assumption we get that W ∗

2 is preferred over W in x′Bnd(xA + yQ, �), and by 
Lemma 5 we get that W ∗

2 is preferred over W in Reg(x′B + y′Q′, � + 1). Consistency implies 
that W ∗

2 	F(D) W , and thus W ∗
2 	F(D) W 	F(D) W ∗

1 .
Now we observe that

scf (W ∗
1 ,Bnd(xA + yQ,�)) − scf (W ∗

2 ,Bnd(xA + yQ,�))

=
(

scf (W ∗
1 ,Bnd(xA + yQ,�)) − scf (W,Bnd(xA + yQ,�))

)
+

(
scf (W,Bnd(xA + yQ,�)) − scf (W ∗

2 ,Bnd(xA + yQ,�))
)

≥
(

scf (W ∗
1 ,Bnd(xA + yQ,�)) − scf (W,Bnd(xA + yQ,�))

)
− xε

2

=
(

scf (W ∗
1 ,Bnd(xA, �)) − scf (W,Bnd(xA, �))

)
− xε

2
,

and

scf (W ∗
1 ,Reg(x′B + y′Q′, � + 1)) − scf (W ∗

2 ,Reg(x′B + y′Q′, � + 1))

=
(

scf (W ∗
1 ,Reg(x′B + y′Q′, � + 1)) − scf (W,Reg(x′B + y′Q′, � + 1))

)
+

(
scf (W,Reg(x′B + y′Q′, � + 1)) − scf (W ∗

2 ,Reg(x′B + y′Q′, � + 1))
)

≥
(

scf (W ∗
1 ,Reg(x′B + y′Q′, � + 1)) − scf (W,Reg(x′B + y′Q′, � + 1))

)
− x′ε

2

=
(

scf (W ∗
1 ,Reg(x′B,� + 1)) − scf (W,Reg(x′B,� + 1))

)
− x′ε

2

=
(

scf (W ∗
1 ,Reg(x′xA,� + 1)) − scf (W,Reg(x′xA,� + 1))

)
− x′ε

2
.
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By combining the above two inequalities we get that

scf (W ∗
1 ,D) − scf (W ∗

2 ,D)

= x′ ·
(

scf (W ∗
1 ,Bnd(xA + yQ,�)) − scf (W,Bnd(xA + yQ,�))

)
+

(
scf (W ∗

1 ,Reg(x′B + y′Q′, � + 1)) − scf (W,Reg(x′B + y′Q′, � + 1))
)

≥ x′ ·
(

scf (W ∗
1 ,Bnd(xA, �)) − scf (W,Bnd(xA, �))

)

+
(

scf (W ∗
1 ,Reg(x′xA,�+1))− scf (W,Reg(x′xA,�+1))

)
− (x′ +xx′)ε

2

= xx′ ·
(

scf (W ∗
1 ,A) − scf (W,A)

)
− (x′ + xx′)ε

2

= xx′ε − (x′ + xx′)ε
2

= (xx′ − x′)ε
2

> 0.

Summarizing, we obtained a profile D, such that scf (W ∗
1 , D) > scf (W ∗

2 , D) and W ∗
2 
F(D) W ∗

1 . 
This, however, contradicts Lemma 8. Hence, we have proven the inductive step, which completes 
the proof of the lemma. �

Lemma 10 allows us to prove Theorem 1, our characterization of ABC scoring rules.

Finalizing the proof of Theorem 1. Let F satisfy symmetry, consistency, weak efficiency, and 
continuity. If F is trivial, then f (x, y) = 0 implements F .

If F is non-trivial, we construct f , W ∗
1 , and W ∗

2 as described above. We claim that for A ∈
A(V ) and W1, W2 ∈ Pk(C) it holds that scf (W1, A) > scf (W2, A) if and only if W1 
F(A) W2. 
For the “if” direction, fix W1 and W2 such that scf (W1, A) > scf (W2, A) and consider a per-
mutation σ : C → C such that σ(W ∗

1 ) = W1. Let W = σ−1(W2). Since renaming the candidates 
does not change the scores of the renamed committees, scf (W ∗

1 , σ−1(A)) > scf (W, σ−1(A))

(here we renamed the candidates using σ−1). By Lemma 10 we get that W ∗
1 
F(σ−1(A)) W . 

Applying neutrality with the permutation σ yields that W1 
F(A) W2.
Now, for the other direction, instead of showing that W1 
F(A) W2 implies scf (W1, A) >

scf (W2, A), we show that scf (W1, A) = scf (W2, A) implies W1 ∼F(A) W2. Note that 
Lemma 10 does not apply to committees with the same score. For the sake of contradic-
tion let scf (W1, A) = scf (W2, A) but W1 
F(A) W2. As a first step, we prove that there 
exists a profile B with scf (W2, B) > scf (W1, B) and W2 
F(B) W1. Since W1 
F(A) W2

and by neutrality, there exists a profile A′ ∈ A(V ) with W2 
F(A′) W1. Thus, there exists an 
� ∈ [m] such that W2 
F(Reg(A′,�)) W1, because otherwise, by consistency, W1 	F(A′) W2 would 
hold; let B = Reg(A′, �). Now, Lemma 5 guarantees that scf�

(W2, B) > scf�
(W1, B). Since 

f (x, �) = γ� · f�(x, �), also scf (W2, B) > scf (W1, B). Observe that for each n ∈ N we have 
scf (W2, B +nA) > scf (W1, B +nA). Thus, by Lemma 10 for each n, W2 
F(B+nA) W1, which 
contradicts continuity of F . Hence scf (W1, A) = scf (W2, A) implies W1 ∼F(A) W2 and, con-
sequently, scf (W1, A) > scf (W2, A) if and only if W1 
F(A) W2. We see that f implements F
and thus F is an ABC scoring rule.

Finally, as we already noted, an ABC scoring rule satisfies symmetry, consistency, weak effi-
ciency, and continuity: this follows immediately from the definitions. �
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A.4. Independence of axioms

The set of axioms used in the statement of Theorem 1 is minimal. First, let us consider the 
variation of AV where the score of a fixed candidate c is doubled. Formally, the score of a 
committee W is defined as 

∑
v∈V |A(v) ∩ W | + |{v ∈ V : c ∈ A(v) ∩ W }|. This rule satisfies all 

axioms except for neutrality. If we consider a variation of AV where voter 1 has a weight of 2, 
i.e., voter 1 gives a score of 2 to each approved candidate; all other voters have a weight of 1. 
This weighted AV rule clearly fails anonymity, but satisfies all other axioms. Note that here we 
need the fact that consistency only has to hold for disjoint voter sets (cf. footnote 3 on page 5).

Next, consider Proportional Approval Voting where ties are broken by Multi-Winner Ap-
proval Voting. This rule—let us call it F∗—satisfies all axioms except for continuity: consider 
the profile A = ({c}) and A′ = ({a, b}, {a, b}, {c}). It holds that {a, b} 
F∗(A′) {a, c} because the 
PAV-score of both committees is 3, but the AV-score of {a, b} is 4 and only 3 for {a, c}. However, 
it holds that {a, c} 
F∗(A+nA′) {a, b} for arbitrary n because the PAV-scores of {a, c} and {a, b}
are 3n + 1 and 3n, respectively.

To see that consistency is independent, consider an ABC ranking rule that is PAV on party-
list profiles (i.e., D’Hondt) and the trivial rule otherwise. This rule fails consistency, since the 
addition of two party-list profiles may not be a party-list profile. All other axioms are satisfied 
by it: symmetry and weak efficiency are easy to see, continuity follows from the fact that in non-
party-list profiles all committees are winning. Finally, the rule which reverses the output of Multi-
Winner Approval Voting (i.e., f (x, y) = −x) satisfies all axioms except for weak efficiency.

Appendix B. Further proof details

Proposition 1. Let Dm,k = {(x, y) ∈ [0, k] ×[0, m − 1] : x ≤ y ∧ k − x ≤ m − y} and let f, g be 
approval scoring functions. If there exist c ∈R and d : [m] → R such that f (x, y) = c ·g(x, y) +
d(y) for all x, y ∈ Dm,k then f, g implement the same ABC scoring rule, i.e., for all approval 
profiles A ∈ A(V ) and committees W1, W2 ∈ Pk(C) it holds that scf (W1, A) > scf (W2, A) if 
and only if scg(W1, A) > scg(W2, A).

Proof. Let A ∈ A(V ) and W ∈ Pk(C). Let D ⊆ [0, k] × [0, m] be the domain of f and g that 
is actually used in the computation of scf (W, A) and scg(W, A). We will show that

D ⊆ Dm,k ∪ {(k,m)}. (B.1)

Let v ∈ V , x = |A(v) ∩ W |, and y = |A(v)|. If y = m, then x = |A(v) ∩ W | = k and condi-
tion (B.1) is satisfied. Let y < m. If y is sufficiently large (close to m), then A(v) ∩ W cannot 
be empty. More precisely, it has to hold that the number of not approved members of W , k − x, 
is at most equal to the total number of not approved candidates in v, m − y; this yields that 
k − x ≤ m − y. Furthermore, x ≤ y (the number of approved members of W must be at most 
equal to the total number of approved candidates). Consequently, (x, y) ∈ Dm,k . This shows that 
condition (B.1) holds.

Consider functions f and g as in the statement of the proposition. We will now show that for 
all W1, W2 ∈ Pk(C), it holds that:

scg(W1,A) − scg(W2,A) = c · (scf (W1,A) − scf (W2,A)).

Let Vi = {v ∈ V : |A(v)| = i} for i ∈ [m]. Now
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scg(W1,A) − scg(W2,A) =

=
m∑

i=1

∑
v∈Vi

g(|A(v) ∩ W1|, |A(v)|) − g(|A(v) ∩ W2|, |A(v)|)

=
m−1∑
i=1

∑
v∈Vi

(
c · f (|A(v) ∩ W1|, |A(v)|) + d(y) − c · f (|A(v) ∩ W2|, |A(v)|) − d(y)

)

= c ·
∑
v∈V

(
f (|A(v) ∩ W1|, |A(v)|) − f (|A(v) ∩ W2|, |A(v)|)

)
= c · (scf (W1,A) − scf (W2,A)

)
Consequently, scg(W1, A) > scg(W2, A) if and only if scf (W1, A) > scf (W2, A). �
Theorem 2. Proportional Approval Voting is the only ABC scoring rule that satisfies D’Hondt 
proportionality.

Proof. Theorem 2 is a special case of Theorem 5. �
Theorem 3. The Approval Chamberlin–Courant rule is the only non-trivial ABC scoring rule 
that satisfies disjoint diversity.

Proof. The Approval Chamberlin–Courant rule maximizes the number of voters that have at 
least one approved candidate in the committee. In a party-list profile, this implies that the k
largest parties receive at least one representative in the committee and hence disjoint diversity is 
satisfied.

For the other direction, let F be an ABC scoring rule implemented by an approval scoring 
function f . Recall Proposition 1 and the relevant domain of approval scoring functions Dm,k =
{(x, y) ∈ [0, k] × [0, m − 1] : x ≤ y ∧ k − x ≤ m − y}. In a first step, we want to show that 
f (x +1, y) = f (x, y) for x ≥ 1 and (x +1, y), (x, y) ∈ Dm,k . Let us fix (x, y) such that (x, y) ∈
Dm,k , (x + 1, y) ∈ Dm,k , and x ≥ 1. Furthermore, let us fix a committee W and consider a set 
X ⊆ C with |X| = y and |X ∩ W | = x. We construct a party-list profile A as follows: A contains 
ζ votes that approve X (intuitively, ζ is a large natural number); further for each candidate c ∈
W \X, profile A contains a single voter who approves {c}. This construction requires y + (k −x)

candidates. Since (x, y) ∈ Dm,k , we have y + (k − x) ≤ m.
If we apply disjoint diversity to profile A, we obtain a winning committee W ′ with W \

X ⊆ W ′ and |W ′ ∩ X| ≥ 1. Observe that scf (W ′, A) = scf (W, A) (the satisfaction of all voters 
remains the same). Let W ′′ be the committee we obtain from W by replacing one candidate in 
W \ X with a candidate in X \ W (such a candidate exists since (x + 1, y) ∈ Dm,k). Since W is 
a winning committee, scf (W ′′, A) ≤ scf (W, A) and thus

ζf (x + 1, y) + (k − x − 1)f (1,1) ≤ ζf (x, y) + (k − x)f (1,1). (B.2)

The above condition can be written as f (x + 1, y) − f (x, y) ≤ 1
ζ

· f (1, 1). Since this must hold 
for any ζ , we get that f (x + 1, y) ≤ f (x, y). Since f (x + 1, y) ≥ f (x, y) by the definition of 
approval scoring functions, we get that f (x + 1, y) = f (x, y) for x ≥ 1. By Proposition 1 we 
can set f (0, y) = 0 for each y ∈ [m]. We conclude that F is also implemented by the approval 
scoring function
32



M. Lackner and P. Skowron Journal of Economic Theory 192 (2021) 105173
fα(x, y) =
{

0 if x = 0,

α(y) if x ≥ 1.

As a next step we show that for the approval scoring function fα(x, y) we can additionally 
assume that α(y) = α(1), for each y. Observe that if y ≥ m − k + 1, then for each committee 
W , a voter who approves y candidates in total, approves at least one member of W . By our 
previous reasoning, each committee gets from such a voter the same score, and so such a voter 
does not influence the outcome of an election. Consequently, we can assume that α(y) = α(1)

for y > m − k. Now, for y ≤ m − k, we also show that α(y) = α(1). Towards a contradiction 
assume that α(y) �= α(1) and further, without loss of generality, α(y) > α(1). To this end, let n
be natural number large enough so that (n − 1) · α(y) > n · α(1). Consider a party-list profile 
consisting of n − 1 voters approving {c1, . . . , cy}, and, for j ∈ [k], n voters each that approves 
candidate {cy+j }. The committee W1 = {cy+1, . . . , cy+k} obtains a score of nk · f (1, 1) = nk ·
α(1), whereas W2 = {c1, cy+2, . . . , cy+k} obtains a score of (n −1) ·α(y) +n(k−1) ·α(1). Since 
by choice of n it holds that (n − 1) · α(y) > n · α(1), committee W2 is winning. This contradicts 
disjoint diversity and hence α(y) = α(1).

Finally, we use Proposition 1 to argue that the CC scoring function fCC implements F . We 
distinguish two cases: α(1) > 0 and α(1) = 0. If α(1) > 0, then fCC = 1

α(1)
· fα(x, y), and we 

see that Proposition 1 indeed applies.
If α(1) = 0, then fα is equivalent (by Proposition 1) to the trivial approval scoring function 

f0(x, y) = 0. Since F is non-trivial, this case cannot occur. �
Theorem 4. Multi-Winner Approval Voting is the only ABC scoring rule that satisfies disjoint 
equality.

Proof. It is straightforward to verify that Multi-Winner Approval Voting satisfies disjoint equal-
ity. For the other direction, consider an ABC scoring rule satisfying disjoint equality that is 
implemented by an approval scoring function f . As in previous proofs we rely on Proposi-
tion 1 to show that f and fAV(x, y) = x implement the same ABC scoring rule. It is thus 
our aim to show that for (x, y) ∈ Dm,k it holds that f (x, y) = c · x + d(y) for some c ∈ R
and d : [m] → R. More specifically, we will show that for (x, y) ∈ Dm,k with 0 ≤ x < y

it holds that f (x + 1, y) − f (x, y) = f (1, 1) − f (0, 1). It then follows from induction that 
f (x, y) = (f (1, 0) − f (0, 0)) · x + f (0, y) and thus we will be able to conclude that f imple-
ments Multi-Winner Approval Voting.

Let (x, y) ∈ Dm,k with x < k and x < y. We construct a profile A ∈ A([k − x + 1]) with 
|A(1)| = y and |A(2)| = · · · = |A(k − x + 1)| = 1. All voters have disjoint sets of approved 
candidates. Hence this construction requires y + k − x candidates. Since (x, y) ∈ Dm,k , it holds 
that k − x ≤ m − y and hence y + k − x ≤ m; we see that a sufficient number of candidates is 
available. Let W1 contain x candidates from A(1) and one candidate from A(2), . . . , A(k−x+1)

each. Let W2 contain x + 1 candidates from A(1) and one candidate from A(2), . . . , A(k − x)

each. Note that |W1| = |W2| = k. By disjoint equality both W1 and W2 are winning committees. 
Hence

f (x, y) + (k − x) · f (1,1) = f (x + 1, y) + (k − x − 1) · f (1,1) + f (0,1)

and thus f (x + 1, y) − f (x, y) = f (1, 1) − f (0, 1). �

33



M. Lackner and P. Skowron Journal of Economic Theory 192 (2021) 105173
Theorem 5. Let d = (d1, d2, . . .) be a non-decreasing sequence of values from N ∪ {∞} and 
let w = (1/d1, 1/d2, . . .). The w-Thiele method is the only ABC scoring rule that satisfies d-
proportionality.

Proof. To see that the w-Thiele method satisfies d-proportionality, let fw-T be the w-Thiele 
method’s approval scoring function defined by fw-T(x, y) = ∑x

i=1 wi . Consider a party-list pro-
file A with p parties, i.e., we have a partition of voters N1, N2, . . .Np and their corresponding 
joint approval sets C1, . . . , Cp . For the sake of contradiction let us assume that W ∈ Pk(C) is 

a winning committee and that there exists i, j such that |Ni |
d|W∩Ci |

<
|Nj |

d|W∩Cj |+1
, W ∩ Ci �= ∅ and 

Cj \W �= ∅. Let a ∈ W ∩Ci and b ∈ Cj \W . We define W ′ = W ∪ {b} \ {a}. Let us compute the 
difference between w-scores of W and W ′:

scfw-T(W ′,A) − scfw-T(W,A) = −|Ni |
d|W∩Ci |

+ |Nj |
d|W∩Cj |+1

> 0.

Thus, we see that W ′ has a higher w-score than W , a contradiction.
To show the other direction, let F be an ABC scoring rule that satisfies d-proportionality 

and f its corresponding approval scoring function. We intend to apply Proposition 1 to show 
that f is equivalent to the w-Thiele method’s approval scoring function fw-T(x, y) = ∑x

i=1 wi . 
Hence we have to show that there exists a constant c and a function d : [m] → R such that f (x) =
c ·fw-T(x, y) +d(y) for all (x, y) ∈ Dm,k = {(x, y) ∈ [0, k] ×[0, m −1] : x ≤ y ∧k−x ≤ m −y}.

Let us fix x ∈ [k] such that k −x < m −y. We consider two cases: we start with the case when 
dx �= ∞.

dx is a positive integer: Let us consider the following party-list profile. There are k − x + 2
groups of voters: N1, . . . , Nk−x+2 with |N1| = dx , |Ni | = d1 for i ≥ 2; their correspond-
ing approval sets are C1, . . . , Ck−x+2. Let |C1| = y, |Ci | = 1 for i ∈ [2, k − x + 1], and 
|Ck−x+2| = m − y − k + x ≥ 1. Consider the two following committees: we choose W1 such 
that |W1 ∩ C1| = x − 1, |W1 ∩ Ci | = 1 for i ≥ 2; we chose W2 such that |W2 ∩ C1| = x, 
|W2 ∩ C2| = 0, and |W2 ∩ Ci | = 1 for i ≥ 1.

It is straight-forward to verify that both W1 and W2 are d-proportional.
Thus, W1 and W2 are winning committees and hence have the same scores. Their respective 

scores are

scf (W1,A) = dx · f (x − 1, y) + d1 · f (1,m − y − k + x) + (k − x) · d1 · f (1,1),

scf (W2,A) = dx · f (x, y) + d1 · f (1,m − y − k + x) + (k − x − 1) · d1 · f (1,1)

+ d1 · f (0,1).

Since scf (W1, A) = scf (W2, A) we have

f (x, y) = f (x − 1, y) + d1

dx

(
f (1,1) − f (0,1)

)
.

dx = ∞: Now, let us move to the case when dx = ∞. Let us fix a committee W and consider a 
set X ⊆ C with |X| = y and |X ∩ W | = x − 1. We construct a party-list profile A as follows: 
A contains ζ votes that approve X (intuitively, ζ is a large natural number); further for each 
candidate c ∈ W \ X, profile A contains a single voter who approves {c}. This construction 
requires y + (k − x + 1) candidates, thus it is possible since we fixed x so that k − x < m − y.
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Clearly, committee W is d-proportional. Let W ′ be the committee we obtain from W by 
replacing one candidate in W \ X with a candidate in X \ W (such a candidate exists since 
(x, y) ∈ Dm,k). We have scf (W ′, A) ≤ scf (W, A) and thus

ζf (x, y) + (k − x)f (1,1) + f (0,1) < ζf (x − 1, y) + (k − x + 1)f (1,1). (B.3)

The above condition can be written as f (x, y) − f (x − 1, y) ≤ 1
ζ

· (f (1, 1) − f (0, 1)). Since 
this must hold for any ζ , we get that f (x + 1, y) ≤ f (x, y). Since f is an approval scoring 
function, f (x, y) ≥ f (x − 1, y); thus we get that f (x, y) = f (x − 1, y), i.e.:

f (x, y) = f (x − 1, y) + d1

∞
(
f (1,1) − f (0,1)

)
.

(Above, we use the convention that ∞∞ = 0.)

Now, as we have shown that

f (x, y) = f (x − 1, y) + d1

dx

(
f (1,1) − f (0,1)

)
holds for 1 ≤ x ≤ k such that k − x < m − y, we can expand this equation until we reach x = 0
or x = k + y − m. Let s(y) = max(0, k + y − m).

f (x, y) = f (s(y), y) + d1

(
f (1,1) − f (0,1)

) x∑
i=s(y)+1

wi

= f (s(y), y) − d1

(
f (1,1) − f (0,1)

) s(y)∑
i=1

wi + d1

(
f (1,1) − f (0,1)

) x∑
i=1

wi .

Obviously, the above equality also holds for x = s(y).
Hence we have shown that indeed f (x) = c · fw-T(x, y) + d(y) for c = d1(f (1, 1) − f (0, 1))

and d(y) = f (s(y), y) − d1

(
f (1, 1) − f (0, 1)

)∑s(y)

i=1 wi . By Proposition 1, F is w-Thiele. �
Lemma 1. Let d = (d1, d2, . . .) be a non-decreasing sequence of values from N . An ABC rank-
ing rule that satisfies neutrality, consistency, and d-proportionality also satisfies weak efficiency.

Proof. Let F be an ABC ranking rule satisfying symmetry, consistency, and d-proportionality. 
To show that F satisfies weak efficiency, it suffices to show that F satisfies weak efficiency for 
single-voter profiles. Indeed, assume that F satisfies weak efficiency for single-voter profiles. 
Let W1, W2 ∈ Pk(C) and A ∈ A(V ) where no voter approves a candidate in W2 \ W1; we want 
to show that W1 	F(A) W2. Since weak efficiency holds for single-voter profiles, we know that 
W1 	F(A(v)) W2 for all v ∈ V . By consistency we can infer that W1 	F(A) W2.

For the sake of contradiction let us assume that F does not satisfy weak efficiency for single-
voter profiles. This means that there exist X ⊆ C and W1, W2 ∈ Pk(C) such that (W2 \ W1) ∩
X = ∅ and W2 
F(X) W1. First, we show that in such case there exist W ∈ Pk−1(C), c, c′ ∈ C

with c ∈ X, c′ /∈ X, and W ∪ {c′} 
F(X) W ∪ {c}. Let z = |W1 ∩ X| − |W2 ∩ X|, and let us 
consider the following sequence of z operations which define z new committees. We start with 
committee W2,1 = W2, and in the i-th operation, i ∈ [z − 1], we construct W2,i+1 from W2,i

by removing from W2,i one arbitrary candidate in W2,i \ X and by adding one candidate from 
(W1 \ W2) ∩ X. Consequently, |W2,z ∩ X| = |W1 ∩ X|, so by neutrality we have W2,z ∼F(X)
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W1. By our assumption we have that W2,1 
F(X) W2,z, thus, there exists i ∈ [z − 1] such that 
W2,i 
F(X) W2,i+1. The committees W2,i and W2,i+1 differ by one element only, so we set W =
W2,i ∩ W2,i+1, c ∈ W2,i+1 \ W2,i and c′ ∈ W2,i \ W2,i+1, and we have W ∪ {c′} 
F(X) W ∪ {c}
for c ∈ X and c′ /∈ X.

Let � denote the number of members of W ∪ {c} which are approved in X, i.e., � = |(W ∪
{c}) ∩ X|. Let us consider the following party-list profile A′. There are two groups of voters: 
N1 with |N1| = d� and N2 with |N2| = dk−�. The voters in N1 approve of X; the voters in N2
approve C \ (X ∪ {c′}). From d-proportionality we infer that committee W ∪ {c} is winning:

|N1|
d|(W∪{c})∩X|

= 1 ≥ dk−�

dk−�+1
= |N2|

d|(W∪{c})∩(C\(X∪{c′})|+1
,

|N2|
d|(W∪{c})∩(C\(X∪{c′})|

= 1 ≥ d�

d�+1
= |N1|

d|(W∪{c})∩X|+1
.

This, however, yields a contradiction: Voters from N1 prefer W ∪ {c′} over W ∪ {c} since W ∪
{c′} 
F(X) W ∪ {c}. For voters from N2 committees W ∪ {c′} and W ∪ {c} are equally good 
by neutrality. Hence, by consistency, it holds that W ∪ {c′} 
F(A′) W ∪ {c}, a contradiction. We 
conclude that W1 	F(X) W2 and hence weak efficiency holds for single-voter profiles and—in 
consequence—for arbitrary profiles. �
Proposition 2. Fix x, y ∈N and let m ≥ y + k − x + 1. Let F be an ABC scoring rule satisfying 
lower quota, and let f be an approval scoring function implementing F . It holds that:

f (x − 1, y) + 1

x
· f (1,1) · k − x

k − x + 1
≤ f (x, y) ≤ f (x − 1, y) + 1

x − 1
· f (1,1).

Proof. Consider a party-list profile A with one group of voters N1 approving y candidates and 
k − x + 1 groups of voters, N2, . . . , Nk−x+2, each approving a single candidate—for each i ∈
[k −x +2] let Ci denote the set of candidates approved by voters from Ni . Each of the remaining 
m − y − k + x − 1 candidates is not approved by any voter. We set |N1| = x(k − x + 1), and for 
each i ≥ 2 we set |Ni | = k − x. Observe that:

k · |N1|
|V | = k · x(k − x + 1)

x(k − x + 1) + (k − x + 1)(k − x)
= k · x(k − x + 1)

k(k − x + 1)
= x.

From the lower quota property, we infer that there exists a winning committee W such that |W ∩
C1| ≥ x, and from the pigeonhole principle we get that there exists i ≥ 2 with W ∩ Ci = ∅; let 
Ci = {ci}. Thus, the score of committee W is higher than or equal to the score of committee (W ∪
{ci}) \ {c} for c ∈ W ∩ C1. As a result we get that f (x, y)|N1| ≥ f (x − 1, y)|N1| + f (1, 1)|Ni |, 
which can be equivalently written as:

f (x, y) ≥ f (x − 1, y) + 1

x
· f (1,1) · k − x

k − x + 1
.

Now, consider another similar party-list profile, with the only difference that |N1| = x − 1, and 
|Ni | = 1 for i ≥ 2. Observe that for i ≥ 2:

k · |Ni |
|V | = k · 1

x − 1 + (k − x + 1)
= 1.

Thus, for each i ≥ 2 we have that |W ∩ Ci | = 1. By a similar reasoning as before we get that: 
f (1, 1)|Ni | + f (x − 1, y)|N1| ≥ f (x, y)|N1|, which is equivalent to:
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f (x, y) ≤ f (x − 1, y) + 1

x − 1
· f (1,1).

This completes the proof. �
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